CESSNA C-172

N 64477

Pilot Operating Handbook

CERVICING REQUIREMENTS*

FUEL:

GRADE -- 80/87 Minimum Grade Aviation Fuel.
Alternate fuels which are also approved are:
100/130 Low Lead AVGAS (maximum lead content of 2 c.c. per gallon)
100/130 Aviation Grade Fuel (maximum lead content of 4.6 c.c. per gallon)

NOTI

When substituting a higher octane fuel, low lead AVGAS 100 should be used whenever possible since it will result in less lead contamination of the engine.

CAPACITY EACH STANDARD TANK -- 21 Gallons. CAPACITY EACH LONG RANGE TANK -- 26 Gallons.

NOTE

To ensure maximum fuel capacity when refueling, place the fuel selector valve in either LEFT or RIGHT position to prevent cross-feeding.

LANDING GEAR:

26.PSI on 6.00-6, 4-Ply Rated Tire.

MAIN WHEEL TIRE PRESSURE -- 29 PSI on 6.00-6, 4-Ply Rated Tires.

NOSE GEAR SHOCK STRUT -
Keep filled with MIL-H-5606 hydraulic fluid and inflated with air to

NOSE WHEEL TIRE PRESSURE -- 31 PSI on 5.00-5, 4-Ply Rated Tire.

* For complete servicing requirements, refer to the aircraft Service Manual.

SERVICING REQUIREMENTS *

ENGINE OIL:

GRADE -- Aviation Grade SAE 50 Above 60°F.

Aviation Grade SAE 10W30 or SAE 30 Between 0° and 70°F.

Aviation Grade SAE 10W30 or SAE 20 Below 10°F.

Multi-viscosity oil with a range of SAE 10W30 is recommended for improved starting in cold weather. Detergent or dispersant oil, conforming to Specification No. MIL-L-22851, must be used.

NOTE

Your Cessna was delivered from the factory with a corrosion preventive aircraft engine oil If oil must be added during the first 25 hours, use only aviation grade straight mineral oil (non-detergent) conforming to Specification No. MIL-L-6082.

APACITY OF ENGINE SUMP -- 8 Quarts.

Do not operate on less than 6 quarts. To minimize loss of oil through breather, fill to 7 quart level for normal flights of less than 3 hours. For extended flight, fill to 8 quarts. These quantities refer to oil dipstick level readings. During oil and oil filter changes, one additional quart is required when the filter element is changed.

OIL AND OIL FILTER CHANGE ---

After the first 25 hours of operation, drain engine oil sump and oil cooler and clean both the oil suction strainer and the oil pressure screen. If an optional oil filter is installed, change filter element at this time. Refill sump with straight mineral oil (non-detergent) and use until a total of 50 hours has accumulated or oil consumption has stabilized; then change to detergent oil. On aircraft not equipped with an optional oil filter, drain the engine oil sump and oil cooler and clean both the oil suction strainer and the oil pressure screen each 50 hours thereafter. On aircraft which have an optional oil filter, the oil change interval may be extended to 100-hour intervals, providing the oil filter element is changed at 50-hour intervals. Change engine oil at least every 6 months even though less than the recommended hours have accumulated. Reduce intervals for prolonged operation in dusty areas, cold climates, or when short flights and long idle periods result in sludging conditions.

X

Moment Envelope, Center of Gravity, 4-8 Mooring Your Airplane, 5-1

N

Noise Abatement, 2-22 Normal Category Maneuvers, 4-1 Normal Landing, 1-6, 2-17 Normal Take-Off, 1-5 Nose Gear Shock Strut, inside back cover

0

Oil System, capacity, inside back cover oil/filter change, inside back cover oil grade, inside back cover pressure gage, 4-3 quick-drain valve, 7-6 temperature gage, 4-3 Operation, Cold Weather, 2-18 Operation, Hot Weather, 2-21 Operation Limitations, Engine, 4-3 Operations Authorized, 4-1 Over-Voltage Sensor and Warning Light, 2-5 Owner Follow-Up System, 5-8 publications, 5-9

P

Painted Surfaces, 5-2
Performance - Specifications,
inside front cover
Power Check, 2-13
Precautionary Landing with Engine
Power, 3-2
Principal Dimensions Diagram, ii

Progressive Care, Cessna, 5-7 Propeller, care, 5-3 Publications, 5-9

0

Quick Drain Valve, Oil, 7-6 Quick-Drain Valves, Fuel, 2-3

R

Radio Selector Switches, 7-3
operation, 7-3
speaker-phone switches, 7-4
transmitter selector switch,
7-3
Recovery From Spiral Dive, 3-6
Rough Engine Operation Or Loss of
Power, 3-7
carburetor icing, 3-7
low oil pressure, 3-8
magneto malfunction, 3-8
spark plug fouling, 3-7

S

Sample Loading Problem, 4-6
Seat Belts and Shoulder Harnesses,
2-9
Securing Aircraft, 1-7
Servicing Requirements, 5-8
inside back cover
engine oil, inside back cover
fuel, inside back cover
landing gear, inside back cover
Short Field Landing, 2-18
Shoulder Harnesses and Seat Belts,
2-9
Spark Plug Fouling, 3-7
Speaker-Phone Switches, 7-4

pins, 2-17 Stalls, 2-17 speed chart, 6-2 Starting Engine, 1-4, 2-10 cold weather, 2-18 Static Pressure Alternate Source Valve, 7-2 Storage, Flyable, 5-6 Surfaces, aluminum, 5-3 painted, 5-2 System, cabin heating, ventilating and defrosting, 2-8 electrical, 2-3 fuel, 2-1 owner follow-up, 5-8 wing flap, 2-8

T

Table of Contents, iii
Tachometer, 4-4
Take-Off, 1-5, 2-13
before, 1-4, 2-12
crosswind, 2-14
data chart, 6-3
maximum performance, 1-5
normal, 1-5
performance charts, 2-14

power check, 2-13 wing flap settings, 2-14 Taxiing, 2-12 diagram, 2-11 Tire Pressure, inside back cover Transmitter Selector Switch, 7-3 True Airspeed Indicator, 7-5

U

Utility Category Maneuvers, 4-2

W

Warm-Up, 2-12
Weight,
empty, inside front cover
gross, inside front cover
Weight and Balance, 4-4
center of gravity moment
envelope, 4-8
loading arrangements diagram,
4-5
loading graph, 4-7
sample loading problem, 4-6
Windshield - Windows, 5-2
Wing Flap Settings, Take-Off, 2-14
Wing Flap System, 2-8
Winterization Kit, 7-1

ndex-4

instrument panel, 1-8
loading arrangements, 4-5
maximum glide, 6-6
principal dimensions, ii
radio selector switches, 7-3
taxiing, 2-11
Dimensions, Principal, ii
Disorientation In Clouds, 3-5
emergency let-downs through
clouds, 3-5
executing 180° turn in
clouds, 3-5
recovery from spiral dive, 3-6
Ditching, 3-3

E

Electrical Fire in Flight, 3-4 Electrical Power Supply System Malfunctions, 3-8 excessive rate of charge, 3-9 insufficient rate of charge, 3-9 Electrical System, 2-3 ammeter, 2-5 circuit breakers and fuses, 2-6 ground service plug receptacle, master switch, 2-4, 2-5 over-voltage sensor and warning light, 2-5 schematic, 2-4 Emergency Landing without Engine Power, 3-2 Emergency Let-Downs Through Clouds, 3-5 Emergency Locator Transmitter (ELT), 3-9 ELT operation, 3-11 Empty Weight, inside front cover Engine, before starting, 1-4 fire during start on ground, 3-3 fire in flight, 3-4

instrument markings, 4-3 oil, inside back cover operation limitations, 4-3 rough operation or loss of power, 3-7 starting, 1-4, 2-10 Engine Failure, 3-1 after take-off, 3-1 during flight, 3-1 Enroute Climb, 1-5, 2-15 Equipment, Cold Weather, 7-1 Excessive Rate of Electrical Charge, 3-9 Executing 180° Turn in Clouds, 3-5 Exterior Inspection Diagram, 1-2 Exterior Lighting, 2-6

F

File, Aircraft, 5-5 Finish and Trim Plate, MAA Plate, 5-4 Fires, 3-3 electrical fire in flight, 3-4 engine fire during start on ground, 3-3 engine fire in flight, 3-4 Flight in Icing Conditions, 3-6 Flyable Storage, 5-6 Forced Landings, 3-2 ditching, 3-3 emergency landing without engine power, 3-2 precautionary landing with engine power, 3-2 Fuel System, 2-1 capacity, inside back cover fuel grade, inside back cover fuel quantity indicators, 4-4 long range fuel tanks, 2-3 quick-dcain valves, 2-3 schematic, 2-2 Fuses and Circuit Breakers, 2-6

G

Graph, Loading, 4-7 Gross Weight, inside front cover Ground Handling, 5-1 Ground Service Plug Receptacle, 7-1

H

Handling Airplane on Ground, 5-1 Harnesses, Shoulder, 2-9 Headset-Microphone, 7-4 Heating, Ventilating and Defrosting System, Cabin, 2-8 Hot Weather Operation, 2-21

- 1

Indicator, Fuel Quantity, 4-4
Indicator, True Airspeed, 7-5
Inspection Requirements, 5-6
Instrument Markings, Engine,
4-3
Instrument Panel Diagram, 1-8
Insufficient Rate of Electrical
Charge, 3-9
Integrated Seat Belt/Shoulder Harnesses With Inertia Reel, 2-9
Interior Care, 5-4
Interior Lighting, 2-7
Inertia Reel, Integrated Seat Belt/
Shoulder Harnesses, 2-9

L

Landings, 2-18 after, 1-6 balked, 1-6, 2-18 before, 1-6 crosswind, 2-18

distance table, 6-5 forced, 3-2 normal, 1-6, 2-18 precautionary with power, 3-2 short field, 2-18 without engine power, 3-2 Landing Gear Servicing, inside back cover main/nose wheel tire pressure, inside back cover nose gear shock strut servicing, inside back cover Let-Down, 1-6 Lighting Equipment, 2-6 exterior lighting, 2-6 interior lighting, 2-7 Limitations, Airspeed, 4-3 Limitations, Engine Operation. 4-3 Loading Arrangements Diagram, 4-5 Loading Graph, 4-7 Loading Problem, Sample, 4-6 Long Range Fuel Tanks, 2-3 Low Oil Pressure, 3-8

M

MAA Plate/Finish Trim Plate, 5-4
Magneto Check, 2-12
Magneto Malfunction, 3-8
Maneuvers - Normal Category, 4-1
Maneuvers - Utility Category, 4-2
Markings, Airspeed Indicator, 4-3
Markings, Engine Instrument, 4-3
Master Switch, 2-4, 2-5
Maximum Glide Diagram, 6-6
Maximum Performance Take-Off, 1-5
Maximum Rate-Of-Climb Data
Chart, 6-3
Microphone-Headset, 7-4

Index-2

Index-3

ALPHABETICAL INDEX

Α

After Landing, 1-6
Aircraft,
file, 5-5
mooring, 5-1
securing, 1-7
Airspeed Correction Table, 6-2
Airspeed Indicator, True, 7-5
Airspeed Indicator Markings, 4-3
Airspeed Limitations, 4-3
Alternate Source Valve, Static
Pressure, 7-2
Alternator Check, 2-13
Aluminum Surfaces, 5-3
Ammeter, 2-5
Authorized Operations, 4-1

В

Balked Landing, 1-6, 2-19 Before Landing, 1-6 Before Starting Engine, 1-4 Before Take-Off, 1-4, 2-12 alternator check, 2-13 magneto check, 2-12 warm-up, 2-12

C

Cabin Heating, Ventilating and
Defrosting System, 2-8
Capacity,
fuel, inside back cover
oil, inside back cover
Carburetor Air Temperature Gage,
4-4, 7-5
Carburetor Icing, 3-7

Care, interior, 5-4 propeller, 5-3 Center of Gravity Moment Envelope, 4-8 Cessna Customer Care Program, 5-7 Cessna Progressive Care, 5-7 Circuit Breakers and Fuses, 2-6 Climb, data, 2-15 enroute, 1-5, 2-15 maximum rate-of-climb data chart, 6-3 speeds, 2-15 Cold Weather Equipment, 7-1 ground service plug receptacle, 7-1 static pressure alternate source valve, 7-2 winterization kit, 7 1 Cold Weather Operation, 2-19 flight operations, 2-20 starting, 2-18 Correction Table, Airspeed, 6-2 Crosswind Landing, 2-18 Crosswind Take-Off, 2-14 Cruise Performance Chart, 2-15, 6-4 Cruising, 1-5, 2-16

101147

D

Diagram, electrical system, 2-4 ELT control panel, 3-10 exterior inspection, 1-2 fuel system, 2-2

Index-1

CESSNA 172I, 172K, 172L and 172M SUPPLEMENTAL FLIGHT MANUAL

III. PROCEDURES

No Change

IV. PERFORMANCE

The performance of this airplane equipped with a Lycoming 0-320-D2G engine is equal to or better than the original F.A.A. approved performance.

F.A.A. APPROVED: May 1, 1981 STC SA2375SW Page 3 of 3 pages

AIRPLANE SUPPLEMENTAL FLIGHT MANUAL FOR

LANDPLANE OR FLOATPLANE

CESSNA MODELS 172I, 172K, 172L and 172M WITH

LYCOMING 0-320-D2G ENGINE INSTALLED

Model Number 172 M Registration Number N 64477 Serial Number 172 65257

This Supplemental Flight Manual is F.A.A. approved material and must be in the airplane for all operations when Lycoming 0-320-D2G engine is installed in accordance with STC SA2375SW. The information contained herein supplements or supersedes the information in the form of placards, markings and manual material. For limitations, procedures and performance information not contained in this Supplemental Flight Manual consult the basic airplane placards, markings and manual material.

> F.A.A. APPROVED for Don P. Watson, Chief Engineering & Manufacturing Branch FEDERAL AVIATION ADMINISTRATION Southwest Region Fort Worth, Texas 76101

May 1, 1981

S.T.C. NO. SA23755W Page 1 of 3 pages

CESSNA 172I, 172K, 172L, and 172M SUPPLEMENTAL FLIGHT MANUAL

GENERAL

ENGINE

Lycoming 0-320-D2G

2. FUEL

100/130 Minimum Octane

3. PROPELLER

McCauley 10160/CTM7557 or 10160/DTM7557

4. PROPELLER (Seaplane only) McCauley 1A175/ETM8042 or 1A175/ATM8042

LIMITATIONS

1. ENGINE LIMITS

Maximum continuous: 150 HP-2650 RPM Take-off (5 minutes): 160 HP-2700 RPM

2. PROPELLER LIMITS

Static RPM at maximum throttle setting: Not over 2400, not under 2280 Diameter: Maximum: 75.0 inches Minimum: 74.0 inches

3. PROPELLER LIMITS (Seaplane only)

Static RPM at maximum throttle setting: Not over 2570, not under 2470 Diameter: Maximum: 80.0 inches Minimum: 78.5 inches

4. ENGINE INSTRUMENT MARKINGS

Tachometer: Green Arc 2200 - 2650 RPM Yellow Arc 2650 - 2700 RPM Redline

0il Pressure: Redline 25 PSI Green Arc 60 - 90 PSI

Redline 100 PST

Cylinder Head Temperature (if installed): Green Arc 225° - 425° F. Redline 500° F.

F.A.A. APPROVED: May 1, 1981 STC SA2375SW

Page 2 of 3 pages

United States of America Department of Transportation—Rederal Aviation Administration

Supplemental Type Certificate

Number SA2375SW

This certificate; issued to RAM Aircraft Modifications, Inc.

P.O. Box 5219

Waco-Madison Cooper Airport

WaCO, TEXAS 75708 worker that the change in the type design for the following product with the limitations and conditions

therefor as specified hereon meets the airworthiness requirements of Part 3 of the Civil Mit

at Product - Type Certificate Number: 3A12

Make: Cessna

Make: Cessna

Model: 172D, 172E, 172F, 172G, 172H, 172I,
172K, 172L, 172M, 172M

Description of Type Design Change: Installation of Lycoming 0-320-D2G, 0-320-D2J, or
0-320-E2D (as modified by STC SE3692SM) engine rated for 160 h.p. take-off and
155 h.p. METO for models 172I, 172K, 172L, and 172M according to RAM Dag, R17201

Rev. F dated 12/9/86; or installation of Lycoming 0-320-D2G, 0-320-D2J, or
0-320-E2D (as modified by STC SE3692SM) engine rated for 160 h.p. take-off and
145 h.p. METO for models 172D, 172E, 172F, 172G, and 172H according to RAM
Dag, 17202, Rev. K dated 12/9/86; or installation of Lycoming 0-320-D2G, 0-320-D2J or
0-320-E2D (as modified by STC SE3692SM) engine (160 h.p., 2700 r.p.m) in
model 172N according to RAM Dag, 17203, Rev. L dated 12/9/86; or later FAA

See continuation sheet of this STC.

This certificate and the supporting data which is the basis for approval shall remain in effect until surrendered, suspended, revoked, or a termination date is otherwise established by the Ildministrator of the Federal Aviation Administration

Late of application: September 7, 1976

State orizonard: 6/10/77; 3/30/78; 11/9/78; 1/26/79; 2/3/81; 9/28/81; 11/5/81; 8/28/87 Revision 8

November 1, 1976

L. B. Andriesen (Signature) Manager, Aircraft Certification Division Southwest Region

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both.

FAA FORM \$110-2 (10-08)

This certificate may be transferred in accordance with FAR 21.17.

United States of America

Department of Transportation—federal Abiation Administration

Supplemental Type Certificate

(Continuation Sheet)

Number SA2375SW

Revision 8

Limitations and Conditions:

1. The following appropriate FAA Approved Manual is required:

Cessna Models	Airplane Flight Manual for Landplane with Lycoming 0-320-D2G engine	Airplane Supplemental Flight Manual for Land- plane or Floatplane with Lycoming 0-320-D2G engine	Landplane or Float-
172I, 172K 172L, 172M	November 1, 1976 or June 10, 1977 or March 30, 1978	January 26, 1979 Or May 1, 1981	November 5, 1981 or August 27, 1987
172D, 172E, 172F, 172G, 172H	June 9, 1977 or March 29, 1978	January 25, 1979 or April 30, 1981	November 5, 1981 or August 27, 1987
172N	Not required	Not required	Not required

- 2. For additional limitations see the applicable flight manual listed above.
- 3. Compatibility of this modification with other previously approved modifications must be determined by the installer.

In afternion of this verificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

FAN FORM \$110-2-1 (10-89)

This certificate may be transferred in accordance with FAR 21.47

PAGE 2 OF 2 PAGES

United States of America

Department of Transportation—Federal Aviation Administration

Supplemental Type Certificate

Number SA2375SW

This cortificate; issued to

RAM Aircraft Modifications, Inc.

P.O. Box 5219

Waco-Madison Cooper Airport

WACO, TEXAS 76708 corlifes that the change in the type design for the following product with the limitations and conditions

therefor as specified hereon meets the airworthiness requirements of Part 3 of the Civil Air Regulations

Model: 172D, 172E, 172F, 172G, 172B, 172I,

172K, 172L, 172M, 172N

172K, 172L, 172M, 172M

172K, 172L, 172K, 172L, and 172M according to RAM DAY, R17201

Rev. F dated 12/9/86; or installation of Lycoming 0-320-D2G, 0-320-D2J, or

0-320-E2D (as modified by STC SE36925N) engine rated for 160 h.p. take-off and

145 h.p. METO for models 172D, 172E, 172F, 172G, and 172H according to RAM

DAYL, 172O2. Rev. K dated 12/9/86; or installation of Lycoming 0-320-D2G, 0-320-D2 Day, 17202, Rev. K dated 12/9/86; or installation of Lycoming 0-320-DZJ, 0-320-DZJ or 0-320-EZD (as modified by STC SE369/ZSW) engine (160 h.p., 2700 r.p.m) in model 172N according to RAM Day, 17203, Rev. L dated 12/9/86; or later FAA

See continuation sheet of this STC.

This cortificate and the supporting data which is the basis for approval shall remain in effect until surrendered, suspended, revoked, or a termination date as otherwise established by the Ildministrator of the Federal Aviation Administration

Lakefapplession: September 7, 1976

Sale of issuance: November 1, 1976

Date messed: 6/10/77; 3/30/78; 11/9/78; 1/26/79; 2/3/81; 9/28/81; 11/5/81; 8/28/87 Revision 8

L. B. Andriesen (Signatur) Manager, Aircraft Certification Division Southwest Region

Any alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

*AA Form \$110-2(10-p8)

This certificate may be transferred in accordance with FAR 21.47.

Maited States of America

Bepartment of Transportation—federal Aviation Administration

Supplemental Type Certificate

(Continuation Sheet)

Number SA2375SA

Revision 8

Limitations and Conditions:

1. The following appropriate FAA Approved Manual is required:

 THE TOTTOMING	Whichtare the Whiches t	smitter to redutters	
Cessna Models	Airplane Flight Manual for Landplane with Lycoming 0-320-D2G engine	Airplane Supplemental Flight Manual for Land- plane or Floatplane with Iyocoming 0-320-D2G engine	Landplane or Float-
1721, 172K 172L, 172M	November 1, 1976 or June 10, 1977 or March 30, 1978	January 26, 1979 or May 1, 1981	November 5, 1981 or August 27, 1987
172D, 172E, 172F, 172G, 172H	June 9, 1977 or March 29, 1978	or	November 5, 1981 or August 27, 1987
172N	Not required	Not required	Not required

- 2. For additional limitations see the applicable flight manual listed above.
- 3. Compatibility of this modification with other previously approved modifications must be determined by the installer.

In alteration of this certificate is punishable by a fine of not exceeding \$1,000, or imprisonment not exceeding 3 years, or both

This embfacts may be transferred in accordance with FAR 21.47

PAGE 2 OF 2 PAGES

Federal Aviation Administration					V-11-11-12-12-12-12-12-12-12-12-12-12-12-								
and disposit	ONS: Print or type all entries. See FAR 43.9. F on of this form. This report is required by law a violation (Section 901 Federal Aviation Ac	r (49 U.S.C. 1421) Failure (343.9-1 (or subsequi lo report can result in	ent revision to a civil pena	thereof) for in ity not to exc	eed \$1,000							
	Make CC55WA	Model 172 -M											
. Aircraft	Serial No. 172 - 65257	Nationality and Registration Mark N 6 4477 Address (As shown on registration certificate)											
. Owner	Name (As shown on registration certificate TROY OAKLAND PLD)	rs 26	72 14005	TRIAL	ertificate) んらん								
, Child	FLYING CLUB INC	1/3	3099										
		3. For FAA Use Only											
-	Make	4. Unit Identification	Senal	No.	Regair	Alteration							
-		4. Unit Identification			5. Tyre	Alternation							
Unit	Make	Moon	140	1105.011	Price dila								
AIRFRAME	As des	cribed in Item 1 above) +		**		X							
						-							
POWERPLANT													
POWERPLANT PROPELLER													
PROPELLER	Туро												
PROPELLER	Type Manufacturar												
PROPELLER	Manufacturer	6. Conformity Statement											
PROPELLER	Manufacturer	B. Kind of Agency			tificate No.								
PROPELLER	Manufacturer	8 Kind of Agency U.S. Cartificated Med			tificate No.								
PROPELLER APPLIANCE	Manufacturer	B Kind of Agency U.S. Caruficated Med Foreign Certificated	Mechanic										
ROPELLER PPLIANCE	Manufacturer	8 Kind of Agency U.S. Cartificated Med	Mechanic										

D. I certify that the regain and/or alleration made to the unit(s) identified in item 4 above and described on the reverse or attachments hereto have been made in accordance with the requirements of Part 43 of the U.S. Federal Aviation Regulations and that the information furnished Ferein is true and correct to the best of my knowledge.

Date

Signature of Authorized Individual.

Pursuant to the authority given persons specified below, the unit identified in item 4 was inspected in the manner prescribed by the Administrator of the Federal Aviation Administration and is SAPPROVED REJECTED

Mapection Authorization

W, Hayalma 7. Approval for Return To Sérvice

Person Approved by Transport Canada Alrworthiness Group

Signature of Authorized Individual William & Hysever

Other (Specify)

MAJOR REPAIR AND ALTERATION

Form Approved

OMB No. 2120-0020

For EAA Has Oak

40

7-9-96

7-9-96

.

Manufacturer

Repair Station

Certificate or Designation No. Al 1745570

FAA Fit. Standards

FAA Designad

Date of Approval or Rejection

0

NOTICE

Weight and balance or operating limitation changes shall be entered in the appropriate aircraft record. An alteration must be compatible with all previous alterations to assure continued conformity with the applicable airworthiness requirements.

Description of Work Accomplished
 (If more space is required, strach additional sheats, identity with aircraft nationality and registration mark and date work completed.)

IHSTALLED LYCOMING ENGINE 0320-DZG SKI L-1604-39A PER STEA 2375-39A-REV#8

☐ Additional Sheets Are Attached

TAKE YOUR CESSNA HOME FOR SERVICE AT THE SIGN. OF THE CESSNA SHIELD".

CESSNA AIRCRAFT COMPANY

1

WICHITA, KANSAS

MORE PEOPLE BUY AND FLY CESSNA AIRPLANES THAN ANY OTHER MAKE

1975

172M 172-65267

ORLD'S LARGEST PRO-DUCER OF GENERAL AVIATION AIRCRAFT SINCE 1956

MODEL 172

AND

Skyhowk

OWNER'S
MANUAL
DO NOT REMINE

LET-DOWN.

- (1) Mixture -- RICH.
- (2) Power -- AS DESIRED.
- (3) Carburetor Heat -- AS REQUIRED (to prevent carburetor icing).

BEFORE LANDING.

- (1) Fuel Selector Valve -- BOTH.
- (2) Mixture -- RICH.
- (3) Carburetor Heat 7 40N (apply full heat before closing throttle).
 (4) Airspeed -- 32 60 MPH (flaps UP). K 75
- (5) Wing Flaps -- AS DESIRED.
- (6) Airspeed -- 05 75 MPM (flaps DOWN).

BALKED LANDING.

- (1) Throttle -- FULL.
- (2) Carburetor Heat -- COLD.
- (3) Wing Flaps -- 20°.
- (4) Airspeed -- 65-MPH, 57 KTS
- (5) Wing Flaps -- RETRACT (slowly).

NORMAL LANDING.

- (1) Touchdown -- MAIN WHEELS FIRST.
- (2) Landing Roll -- LOWER NOSE WHEEL GENTLY.
- (3) Braking -- MINIMUM REQUIRED.

AFTER LANDING.

- (1) Wing Flaps -- UP.
- (2) Carburetor Heat -- COLD.

SECURING AIRCRAFT.

- (1) Parking Brake -- SET.
- (2) Radios, Electrical Equipment, Autopilot -- OFF. Beacon
- (3) Mixture -- IDLE CUT-OFF (pulled full out),
- (4) Ignition Switch -- OFF.
- (5) Master Switch -- OFF.
- (6) Control Lock -- INSTALL.

BEFORE STARTING ENGINE

- (1) Exterior Preflight -- COMPLETE.
- (2) Seats, Belts, Shoulder Harnesses -- ADJUST and LOCK.
- (3) Fuel Selector Valve -- BOTH.
- (4) Radios, Autopilot, Electrical Equipment -- OFF.
- (5) Brakes -- TEST and SET.

STARTING ENGINE.

- (1) Mixture -- RICH.
- (2) Carburetor Heat -- COLD.
- (3) Master Switch -- ON.
- (4) Prime -- AS REQUIRED (2 to 6 strokes; none if engine is warm).
- (5) Throttle -- OPEN 1/8 INCH.
- (6) Propeller Area -- CLEAR, (7) Ignition Switch -- START (release when engine starts).
 (8) Oil Pressure -- CHECK.

 - BEACON LIGHT ON
 - 10 RADIOS ON

BEFORE TAKE-OFF.

- (1) Parking Brake -- SET.
- (2) Cabin Doors and Window -- CLOSED and LOCKED.
- (3) Flight Controls -- FREE and CORRECT.
- (4) Elevator Trim -- TAKE-OFF.
- (5) Fuel Selector Valve -- BOTH.
- (6) Mixture -- RICH (below 3000 ft.).
- (7) Throttle -- 1700 RPM.
 - a. Magnetos -- CHECK (RPM drop should not exceed 125 RPM on either magneto or 50 RPM differential between magnetos).
 - b. Carburetor Heat -- CHECK (for RPM drop),
 - c. Engine Instruments and Ammeter -- CHECK.
 - d. Suction Gage -- CHECK.
- (8) Flight Instruments and Radios -- SET.
- (9) Optional Autopilot -- OFF.
- (10) Throttle Friction Lock -- ADJUST.
 - (11) Wing Flaps -- UP.

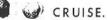
TAKE-OFF.

NORMAL TAKE-OFF.

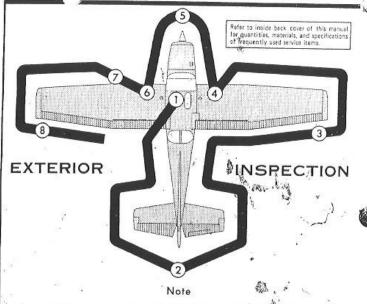
- (1) Wing Flaps -- UP.
- (2) Carburetor Heat -- COLD.
- (3) Throttle -- FULL.
- (4) Elevator Control -- LIFT NOSE WHEEL (at 80 MPH)
- (5) Climb Speed -- 78 to 65 MPH. KTS . 65 74

MAXIMUM PERFORMANCE TAKE-OFF. SHORT FIELD

- (1) Wing Flaps -- UP.
- (2) Carburetor Heat -- COLD.
- (3) Brakes -- APPLY.
- (4) Throttle -- FULL.
- (5) Brakes -- RELEASE.
- (6) Airplane Attitude -- SLIGHTLY TAIL LOW.
- (7) Climb Speed -- 86 MPH (until all obstacles are cleared).


ENROUTE CLIMB.

(1) Airspeed -- 80 to 90 MPH. 大丁S


NOTE

If a maximum performance climb is necessary, use speeds shown in the Maximum Rate-Of-Climb Data chart in Section VI.

- (2) Throttle -- FULL.
- (3) Mixture -- FULL RICH (mixture may be leaned above 3000 feet).

- (1) Power -- 2200 to 2700 RPM (no more than 75%),
- (2) Elevator Trim -- ADJUST.
- (3) Mixture -- LEAN.

Visually check aircraft for general condition during walkaround inspection. In cold weather, remove even small accumulations of frost, ice or snow from wing, tail and control surfaces. Also, make sure that control surfaces contain no internal accumulations of ice or debris. If night flight is planned, check operation of all lights, and make sure a flashlight is available.

- a. Remove control wheel lock.
 - b. Check ignition switch OFF.
 - c. Turn on master switch and check fuel quantity indicators; then turn off master switch.
 - Check fuel selector valve handle on BOTH.
 - e. Check baggage door for security. Lock with key if children are to occupy child's seat.

Remove rudder gust lock, if installed.

Disconnect tail tie-down.

- Check control surfaces for freedom of movement and security,
- Check aileron for freedom of movement and security,

a. Disconnect wing tie-down.

b. Check main wheel tire for proper inflation.

- c. Before first flight of the day and after each refueling, use sampler cup and drain small quantity of fuel from fuel tank sump quick-drain valve to check for water, sediment, and proper fuel grade.
- d. Visually check fuel quantity; then check fuel filler cap secure,

Check oil level. Do not operate with less than six quarts. Fill to eight quarts for extended flights.

Before first flight of the day and after each refueling, pull out strainer drain knob for about four seconds to clear fuel strainer of possible water and sediment. Check strainer drain closed. If water is observed, the fuel system may contain additional water, and further draining of the system at the strainer, fuel tank sumps, and fuel selector valve drain plug will be necessary.

c. Check propeller and spinner for nicks and security.

Check landing light(s) for condition and cleanliness.

Check carburetor air filter for restrictions by dust or other foreign matter.

Check nose wheel strut and tire for proper inflation.

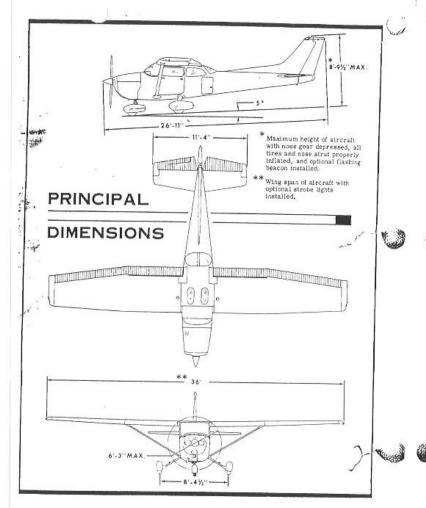
Disconnect tie-down rope.

- Inspect flight instrument static source opening on side of fuselage for stoppage (left side only).
- a. Check main wheel tire for proper inflation.
 - Before first flight of the day and after each refueling, use sampler cup and drain small quantity of fuel from fuel tank sump quick-drain valve to check for water, sediment, and proper fuel
 - c. Visually check fuel quantity, then check fuel filler cap secure.
- Remove pitot tube cover, if installed, and check pitot tube opening for stoppage.

Check fuel tank vent opening for stoppage.

- Check stall warning vent opening for stoppage.
- Disconnect wing tie-down.
- Check aileron for freedom of movement and security.

Section 1


OPERATING CHECKLIST

One of the first steps in obtaining the utmost performance, service, and flying enjoyment from your Cessna is to familiarize yourself with your aircraft's equipment, systems, and controls. This can best be done by reviewing this equipment while sitting in the aircraft. Those items whose function and operation are not obvious are covered in Section II.

Section I lists, in Pilot's Checklist form, the steps necessary to operate your aircraft efficiently and safely. It is not a checklist in its true form as it is considerably longer, but it does cover briefly all of the points that you should know for a typical flight. A more convenient plastic enclosed checklist, stowed in the map compartment, is available for quickly checking that all important procedures have been performed. Since vigilance for other traffic is so important in crowded terminal areas, it is important that preoccupation with checklists be avoided in flight. Procedures should be carefully memorized and performed from memory. Then the checklist should be quickly scanned to ensure that nothing has been missed.

The flight and operational characteristics of your aircraft are normal in all respects. There are no "unconventional" characteristics or operations that need to be mastered. All controls respond in the normal way within the entire range of operation. All airspeeds mentioned in Sections I, II and III are indicated airspeeds. Corresponding calibrated airspeed may be obtained from the Airspeed Correction Table in Section VI.

The will with the

TABLE OF CONTENTS

					Dage -
	SECTION	E	2	OPERATING CHECKLIST	
	SECTION	11	-	DESCRIPTION AND	
				OPERATING DETAILS	. 2-1
	SECTION	Ш	-	EMERGENCY PROCEDURES	3-1
(SECTION	IV	-	OPERATING LIMITATIONS	4-1
	SECTION	٧	-	CARE OF THE AIRPLANE	5-1
	SECTION	VI		OPERATIONAL DATA	6-1
	SECTION	VII	-	OPTIONAL SYSTEMS	7-1
	ALPHABE	TIC	Α	L INDEXInd	ex-l
					2.0

This manual describes the operation and performance of the Model 172, the Skyhawk, and the Skyhawk II. Equipment described as "Optional" denotes that the subject equipment is optional on the Model 172. Much of this equipment is standard on the Skyhawk and Skyhawk II.

PERFORMANCE - SPECIFICATIONS

GROSS WEIGHT	
Top Speed at Sea Level	
Cruise, 75% Power at 8000 ft	
RANGE:	
Crulse, 75% Power at 8000 ft	
38 Gallons, No Reserve 4.7 hrs	
138-mph /2.0	
Cruise, 75% Power at 8000 ft	
48 Gallons, No Reserve 5.9 hrs	
188 mph /2 0	
Maximum Range at 10,000 ft	
38 Gallons, No Reserve 6.0 hrs	
112 102	
Maximum Range at 10,000 ft	
48 Gallons, No Reserve . 7.5 hrs	
117 3001 /02	
RATE OF CLIMB AT SEA LEVEL	
SERVICE CEILING	
TAKE-OFF:	
Ground Run	
Total Distance Over 50-Foot Obstacle	
- LANDING-	
Ground Roll	
Total Distance Over 50-Foot Obstacle	
STATI EDECO	
Flaps Up. Power Off	
Flaps Down, Power Off	
BAGGAGE	
WING LOADING: Pounds/Sq Foot	
POWER LOADING: Pounds/HP	
FIFE CAPACITY: Total	
Stanflard Tanks	2
Optional Long Range Tanks	
OIL CAPACITY 8 qts	4
PROPELLER: Fixed Pitch, Diameter	
ENGINE:	
Lycoming Engine	
160 rated HP at 2700 RPM	
760 F172 F172	
EMPTY WEIGHT: (Approximate) 1305 lbs 1350 lbs 1375 lbs 1335 lbs 1410 lbs	
USEFUL LOAD: (Approximate) 995 lbs 950 lbs 925 lbs 965 lbs 890 lbs	

NOTE: Speed performance data is shown for the Skyhawk which is one to four mph faster than a standard equipped Model 172 (without speed fairings), with the maximum difference occurring at top speed. There is a corresponding difference in range while all other performance figures are the same for the Model 172 as shown for

*This manual covers operation of the Model 172/Skyhawk which is certificated the manual also for as Model 172M under FAA Type Certificate No. 3A12. The manual also co operation of the Reims/Cessna F172 Skyhawk which is certificated as Model F172M under French Type Certificate No. 25 and FAA Type Certificate No. A4EU

CORVEIGHT # 1982

Wichita, Kansas USA

Welcome to the ranks of Cessna owners! Your Cessna has been designed and α structed to give you the most in performance, economy, and comfort. It is dursire that you will find flying it, either for business or pleasure, a pleasant and profitable experience.

This Owner's Manual has been prepared as a guide to help you get the most pleas and utility from your Model 172/Skyhawk. It contains information about your Ceequipment, operating procedures, and performance; and suggestions for its serv and care. We urge you to read it from cover to cover, and to refer to it frequen

Our interest in your flying pleasure has not ceased with your purchase of a Cess. World-wide, the Cessna Dealer Organization backed by the Cessna Service Depa: ment stands ready to serve you. The following services are offered by most Cea

THE CESSNA WARRANTY -- It is designed to provide you with the most comprehensive coverage possible:

a. No exclusions

Coverage includes parts and labor

c. Available at Cessna Dealers world wide

d. Best in the industry

Specific benefits and provisions of the warranty plus other important benefits for you are contained in your Customer Care Program book supplied with your aircraft. Warranty service is available to you at any authorized Cessna Dealer throughout the world upon presentation of your Customer Care Card which establishes your eligibility under the warranty.

FACTORY TRAINED PERSONNEL to provide you with courteous expert

FACTORY APPROVED SERVICE EQUIPMENT to provide you with the most efficient and accurate workmanship possible.

A STOCK OF GENUINE CESSNA SERVICE PARTS on hand when you need them.

THE LATEST AUTHORITATIVE INFORMATION FOR SERVICING CESSNA AIR PLANES, since Cessna Dealers have all of the Service Manuals and Parts Catalogs, kept current by Service Letters and Service News Letters, published by Cessna Aircraft Company.

We rige all Cessna owners to use the Cessna Dealer Organization to the fullest.

A current Cessna Dealer Directory accompanies your new airplane. The Directory is revised frequently, and a current copy can be obtained from your Cessna Dealer Make your Directory one of your cross-country flight planning aids; a warm welcon awaits you at every Cessna Dealer.

D1036-13-RPC-1000-7/87

Cessna Aircraft Company

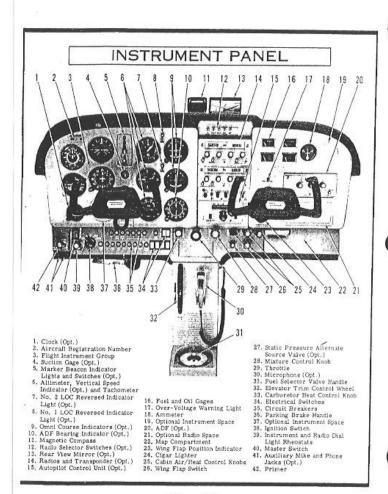


Figure 2-1,

0

Section II

DESCRIPTION AND OPERATING DETAILS

The following paragraphs describe the systems and equipment whose function and operation is not obvious when sitting in the aircraft. This section also covers in somewhat greater detail some of the items listed in Checklist form in Section I that require further explanation.

FUEL SYSTEM.

colleges with a second control of the second

Fuel is supplied to the engine from two tanks, one in each wing. With the fuel selector valve on BOTH, the total usable fuel for all flight conditions is 38 gallons for the standard tanks.

Fuel from each wing tank flows by gravity to a selector valve. Depending upon the setting of the selector valve, fuel from the left, right, or both tanks flows through a fuel strainer and carburetor to the engine induction system.

The fuel selector valve should be in the BOTH position for take-off, climb, landing, and maneuvers that involve prolonged slips or skids. Operation from either LEFT or RIGHT tank is reserved for cruising flight.

NOTE

With low fuel (1/8th tank or less), a prolonged steep descent (1500 feet or more) with partial power, full flaps, and 60 MPH or greater should be avoided due to the possibility of the fuel tank outlets being uncovered, causing temporary fuel starvation. If starvation occurs, leveling the nose should restore power within 20 seconds.

NOTE

When the fuel selector valve handle is in the BOTH position in cruising flight, unequal fuel flow from each

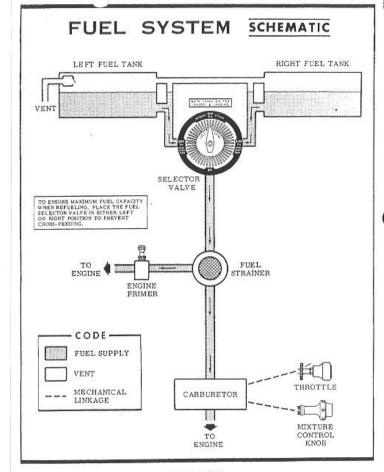


Figure 2-2.

tank may occur if the wings are not maintained exactly level. Resulting wing heaviness can be alleviated gradually by turning the selector valve handle to the tank in the "heavy" wing.

NOTE

It is not practical to measure the time required to consume all of the fuel in one tank, and, after switching to the opposite tank, expect an equal duration from the remaining fuel. The airspace in both fuel tanks is interconnected by a vent line (figure 2-2) and, therefore, some sloshing of fuel between tanks can be expected when the tanks are nearly full and the wings are not level.

For fuel system servicing information, refer to Servicing Requirements on the inside back cover.

FUEL TANK SUMP QUICK-DRAIN VALVES.

Each fuel tank sump is equipped with a fuel quick-drain valve to facilitate draining and/or examination of fuel for contamination and grade. The valve extends through the lower surface of the wing just outboard of the cabin door. A sampler cup stored in the aircraft is used to examine the fuel. Insert the probe in the sampler cup into the center of the quick-drain valve and push. Fuel will drain from the tank sump into the sampler cup until pressure on the valve is released.

LONG RANGE FUEL TANKS.

Special wings with long range fuel tanks are available to replace the standard wings and fuel tanks for greater endurance and range. When these tanks are installed, the total usable fuel for all flight conditions is 48 gallons.

ELECTRICAL SYSTEM.

Electrical energy is supplied by a 14-volt, direct-current system powered by an engine-driven alternator (see figure 2-3). A 12-volt battery is located on the left-hand forward portion of the firewall. Power is supplied to all electrical circuits through a split bus bar, one side con-

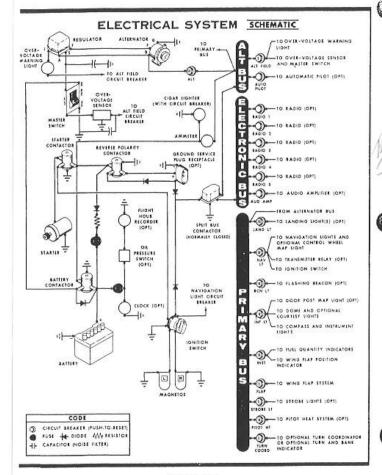


Figure 2-3.

taining electronic systems and the other side having general electrical systems. Both sides of the bus are on at all times except when either an external power source is connected or the ignition/starter switch is turned on; then a power contactor is automatically activated to open the circuit to the electronic bus. Isolating the electronic circuits in this manner prevents harmful transient voltages from damaging the transistors in the electronic equipment.

MASTER SWITCH.

The master switch is a split-rocker type switch labeled MASTER, and is ON in the up position and OFF in the down position. The right half of the switch, labeled BAT, controls all electrical power to the aircraft. The left half, labeled ALT controls the alternator.

Normally, both sides of the master switch should be used simultaneously; however, the BAT side of the switch could be turned ON separately to check equipment while on the ground. The ALT side of the switch, when placed in the OFF position, removes the alternator from the electrical system. With this switch in the OFF position, the entire electrical load is placed on the battery. Continued operation with the alternator switch in the OFF position will reduce battery power low enough to open the battery contactor, remove power from the alternator field, and prevent alternator restart.

AMMETER.

The ammeter indicates the flow of current, in amperes, from the alternator to the battery or from the battery to the aircraft electrical system. When the engine is operating and the master switch is ON, the ammeter indicates the charging rate applied to the battery. In the event the alternator is not functioning or the electrical load exceeds the output of the alternator, the ammeter indicates the discharge rate of the battery.

OVER-VOLTAGE SENSOR AND WARNING LIGHT.

The aircraft is equipped with an automatic over-voltage protection system consisting of an over-voltage sensor behind the instrument panel and a red warning light, labeled HIGH VOLTAGE, under the oil temperature and pressure gages.

In the event an over-voltage condition occurs, the over-voltage sensor automatically removes alternator field current and shuts down the

alternator. The red warning light will then turn on, indicating to the pilot that the alternator is not operating and the aircraft battery is supplying all electrical power.

The over-voltage sensor may be reset by turning the master switch off and back on again. If the warning light does not illuminate, normal alternator charging has resumed; however, if the light does illuminate again, a malfunction has occurred, and the flight should be terminated as soon as practical.

The over-voltage warning light may be tested by momentarily turning off the ALT portion of the master switch and leaving the BAT portion turned on.

CIRCUIT BREAKERS AND FUSES.

The majority of electrical circuits in the aircraft are protected by "push-to-reset" circuit breakers mounted on the instrument panel. Exceptions to this are the optional clock and flight hour recorder circuits, and the battery contactor closing (external power) circuit which have fuses mounted adjacent to the battery. Also, the cigar lighter is protected by a manually reset type circuit breaker mounted directly on the back of the lighter behind the instrument panel.

When more than one radio is installed, the radio transmitter relay (which is a part of the radio installation) is protected by the navigation lights circuit breaker labeled NAV L.T. It is important to remember that any malfunction in the navigation lights system which causes the circuit breaker to open will de-activate both the navigation lights and the transmitter relay. In this event, the navigation light switch should be turned off to isolate the circuit; then reset the circuit breaker to reactivate the transmitter relay and permit its usage. Do not turn on the navigation lights switch until the malfunction has been corrected.

LIGHTING EQUIPMENT.

EXTERIOR LIGHTING.

Conventional navigation lights are located on the wing tips and top of the rudder. Optional lighting includes a single landing light or dual landing/taxi lights in the cowl nose cap, a flashing beacon on the top of othe vertical fin, a strobe light on each wing tip, and two courtesy lights, one under each wing, just outboard of the cabin door. The courtesy lights are controlled by the dome light switch located on the overhead console. All other exterior lights are controlled by rocker type switches located on the left switch and control panel. The switches are ON in the up position and OFF in the down position.

The flashing beacon should not be used when flying through clouds or overcast; the flashing light reflected from water droplets or particles in the atmosphere, particularly at night, can produce vertigo and loss of orientation.

The two high intensity strobe lights will enhance anti-collision protection. However, the lights should be turned off when taxiing in the vicinity of other aircraft, or during flight through clouds, fog or haze.

INTERIOR LIGHTING.

Illumination of the instrument panel is provided by red flood lighting in the forward portion of the overhead console. The magnetic compass and radio equipment have integral lighting. A dual rheostat control on the left switch and control panel operates these lights. The inner knob, labeled PANEL, operates the instrument panel and compass lighting. The outer knob, labeled RADIO, controls all radio lighting.

A cabin dome light is located in the overhead console, and is operated by a switch adjacent to the light. To turn the light on, move the switch to the right. This will also operate the optional courtesy lights.

An optional map light may be mounted on the bottom of the pilot's control wheel. The light illuminates the lower portion of the cabin, just forward of the pilot, and is helpful when checking maps and other flight data during night operations. To operate the light, first turn on the NAV LT switch, then adjust the map light's intensity with the disk type rheostat control located on the bottom of the control wheel.

A doorpost map light is also offered as optional equipment, and is located at the top of the left forward doorpost. The light contains both red and white bulbs, and may be positioned to illuminate any area desired by the pilot. A switch on the left forward doorpost is labeled RED, OFF, and WHITE. Placing the switch in the top position will provide a red light. In the bottom position, standard white lighting is provided. The center position is OFF.

WING FLAP SYSTEM.

The wing flaps are electrically operated by a flap motor located in the right wing. Flap position is controlled by a switch, labeled WING FLAPS on the lower center portion of the instrument panel. Flap position is shown by an indicator on the lower right portion of the instrument panel below the right control wheel position.

To extend the wing flaps, the flap switch must be depressed and held in the DOWN position until the desired degree of extension is reached. Releasing the switch allows it to return to the center off position. Normal full flap extension in flight will require approximately 9 seconds. After the flaps reach maximum extension or retraction, limit switches will automatically shut off the flap motor.

To retract the flaps, place the flap switch in the UP position. The switch will remain in the UP position without manual assistance due to an over-center design of the switch. Full flap retraction in flight requires approximately 7 seconds. More gradual flap retraction can be accomplished by intermittent operation of the flap switch to the UP position. After full retraction, the switch is normally returned to the center off position.

CABIN HEATING, VENTILATING AND DEFROSTING SYSTEM.

For cabin ventilation, pull the CABIN AIR knob out. To raise the air temperature, pull the CABIN HT knob out approximately 1/4" to 1/2" for a small amount of cabin heat. Additional heat is available by pulling the knob out farther; maximum heat is available with the CABIN HT knob pulled out and the CABIN AIR knob pushed full in. When no heat is desired in the cabin, the CABIN HT knob is pushed full in.

Front cabin heat and ventilating air is supplied by outlet holes spaced across a cabin manifold just forward of the pilot's and copilot's feet.

Rear cabin heat and air is supplied by two ducts from the manifold, one extending down each side of the cabin to an outlet at the front door post at floor level. Windshield defrost air is also supplied by a duct leading from the cabin manifold. Two knobs control sliding valves in the defroster outlet and permit regulation of defroster airflow.

Separate adjustable ventilators supply additional air; one near each upper corner of the windshield supplies air for the pilot and copilot, and two optional ventilators in the rear cabin ceiling supply air to the rear seat passengers.

SHOULDER HARNESSES.

Shoulder harnesses are provided as standard equipment for the pilot and front seat passenger, and as optional equipment for the rear seat passengers. Seat belts are standard equipment for all passengers.

Each standard front seat harness is attached to a rear door post just above window line and is stowed behind a stowage sheath mounted above each cabin door. The optional rear seat shoulder harnesses are attached just behind the lower corners of the aft side windows. Each harness is stowed behind a stowage sheath located above the aft side window.

To use a standard front or optional rear seat shoulder harness, fasten and adjust the seat belt first. Remove the harness from the stowed position, and lengthen as required by pulling on the end of the harness and the narrow release strap. Snap the harness metal stud firmly into the retaining slot adjacent to the seat belt buckle. Then adjust to length by pulling down on the free end of the harness. A properly adjusted harness will permit the occupant to lean forward enough to sit completely erect but is tight enough to prevent excessive forward movement and contact with objects during sudden deceleration. Also, the pilot will want the freedom to reach all controls easily.

Releasing and removing the shoulder harness is accomplished by pulling upward on the narrow release strap and removing the harness stud from the slot in the seat belt buckle. In an emergency, the shoulder harness may be removed by releasing the seat belt first and pulling the harness over the head by pulling up on the release strap.

INTEGRATED SEAT BELT/SHOULDER HARNESSES WITH INERTIA REEL.

Optional integrated seat belt/shoulder harnesses with inertia reels are available for the pilot and front seat passenger. The seat belt/shoulder harnesses extend from inertia reels located in the cabin ceiling to attach

points on the mooard side of the two front seats. A separate seat belt half and buckle is located on the outboard side of the seats. Inertia reels allow complete freedom of body movement. However, in the event of a sudden deceleration, they will lock up automatically to protect the occupants.

NOTE

The inertia reels are located for maximum shoulder harness comfort and safe retention of the seat occupants. This location requires that the shoulder harnesses cross near the top so that the right hand inertia reel serves the pilot and the left hand reel serves the front passenger. When fastening the harness, check to ensure the proper harness is being used.

To use the seat belt/shoulder harness, adjust the metal buckle half on the harness up far enough to allow it to be drawn across the lap of the occupant and be fastened into the outboard seat belt buckle. Adjust seat belt tension by pulling up on the shoulder harness. To remove the seat belt/shoulder harness, release the seat belt buckle and allow the inertia reel to draw the harness to the inboard side of the seat.

STARTING ENGINE.

During engine starting, open the throttle approximately 1/8 inch. In warm temperatures, one or two strokes of the primer should be sufficient. In cold weather, up to six strokes of the primer may be necessary. If the engine is warm, no priming will be required. In extremely cold temperatures, it may be necessary to continue priming while cranking the engine.

Weak intermittent firing followed by puffs of black smoke from the exhaust stack indicates overpriming or flooding. Excess fuel can be cleared from the combustion chambers by the following procedure: Set the mixture control full lean and the throttle full open; then crank the engine through several revolutions with the starter. Repeat the starting procedure without any additional priming.

If the engine is underprimed (most likely in cold weather with a cold engine) it will not fire at all, and additional priming will be necessary. As soon as the cylinders begin to fire, open the throttle slightly to keep it running.

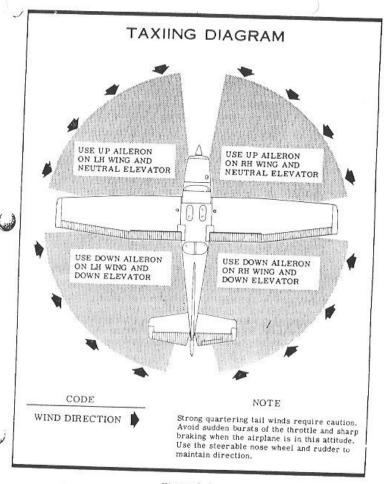


Figure 2-4.

After starting, if the oil gage does not begin to show pressure within 30 seconds in the summertime and about twice that long in very cold weather, stop engine and investigate. Lack of oil pressure can cause serious engine damage. After starting, avoid the use of carburetor heat unless icing conditions prevail.

NOTE

Additional details for cold weather starting and operation may be found under Cold Weather Operation in this section.

TAXIING.

When taxiing, it is important that speed and use of brakes be held to a minimum and that all controls be utilized (see Taxiing Diagram, figure 2-4) to maintain directional control and balance.

The carburetor heat control knob should be pushed full in during all ground operations unless heat is absolutely necessary. When the knob is pulled out to the heat position, air entering the engine is not filtered.

Taxiing over loose gravel or cinders should be done at low engine speed to avoid abrasion and stone damage to the propeller tips.

BEFORE JAKE-OFF.

WARM-UP.

If the engine accelerates smoothly, the aircraft is ready for take-off. Since the engine is closely cowled for efficient in-flight engine cooling, precautions should be taken to avoid overheating during prolonged engine operation on the ground. Also, long periods of idling may cause fouled spark plugs.

MAGNETO CHECK.

The magneto check should be made at 1700 RPM as follows. Move gnition switch first to R position and note RPM. Next move switch back o BOTH to clear the other set of plugs. Then move switch to the L position, note RPM and return the switch to the BOTH position. RPM drop

should not exceed 125 RPM on either magneto or show greater than 50 RPM differential between magnetos. If there is a doubt concerning operation of the ignition system, RPM checks at higher engine speeds will usually confirm whether a deficiency exists.

An absence of RPM drop may be an indication of faulty grounding of one side of the ignition system or should be cause for suspicion that the magneto timing is set in advance of the setting specified.

ALTERNATOR CHECK.

Prior to flights where verification of proper alternator and voltage regulator operation is essential (such as night or instrument flights), a positive verification can be made by loading the electrical system momentarily (3 to 5 seconds) with the optional landing light (if so equipped), or by operating the wing flaps during the engine runup (1700 RPM). The ammeter will remain within a needle width of zero if the alternator and voltage regulator are operating properly.

TAKE-OFF.

POWER CHECK.

It is important to check full-throttle engine operation early in the take-off run. Any signs of rough engine operation or sluggish engine acceleration is good cause for discontinuing the take-off. If this occurs, you are justified in making a thorough full-throttle, static runup before another take-off is attempted. The engine should run smoothly and turn approximately 2270 to 2370 RPM with carburetor heat off and mixture full rich.

NOTE

Carburetor heat should not be used during take-off unless it is absolutely necessary for obtaining smooth engine acceleration.

Full-throttle runups over loose gravel are especially harmful to propeller tips. When take-offs must be made over a gravel surface, it is very important that the throttle be advanced slowly. This allows the airplane to start rolling before high RPM is developed, and the gravel will be blown back of the propeller rather than pulled into it. When unavoid-

able small dems appear in the propeller blades, they should be immediately corrected as described in Section V under propeller care.

Prior to take-off from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full-throttle, static runup.

After full throttle is applied, adjust the throttle friction lock clockwise to prevent the throttle from creeping back from a maximum power position. Similar friction lock adjustments should be made as required in other flight conditions to maintain a fixed throttle setting.

WING FLAP SETTINGS.

Normal and obstacle clearance take-offs are performed with wing flaps up. The use of 10° flaps will shorten the ground run approximately 10%, but this advantage is lost in the climb to a 50-foot obstacle. Therefore, the use of 10° flaps is reserved for minimum ground runs or for take-off from soft or rough fields. If 10° of flaps are used for minimum ground runs, it is preferable to leave them extended rather than retract them in the climb to the obstacle. In this case, use an obstacle clearance speed of TOPH. As soon as the obstacle is cleared, the flaps may be retracted as the aircraft accelerates to the normal flaps-up climb speed of 80 to 90 MPH. ATS

During a high altitude take-off in hot weather where climb would be marginal with 10° flaps, it is recommended that the flaps not be used for take-off. Flap settings greater than 10° are not recommended at any time for take-off.

PERFORMANCE CHARTS.

Consult the Take-Off Data chart in Section VI for take-off distances under various gross weight, altitude, headwind, temperature, and runway surface conditions.

CROSSWIND TAKE-OFFS.

Take-offs into strong crosswinds normally are performed with the minimum flap setting necessary for the field length to minimize the drift angle immediately after take-off. The aircraft is accelerated to a speed slightly higher than normal, then pulled off abruptly to prevent possible settling back to the runway while drifting. When clear of the ground, make a coordinated turn into the wind to correct for drift.

ENROUTE CLIMB

CLIMB DATA.

For detailed data, refer to the Maximum Rate-Of-Climb Data chart in Section VI.

CLIMB SPEEDS.

Normal climbs are performed at 80 to 90 MPH with flaps up and full throttle for best engine cooling. The mixture should be full rich below 3000 feet and may be leaned above 3000 feet for smoother engine operation or to obtain maximum RPM for maximum performance climb. The maximum rate-of-climb speeds range from 91-MPH at sea level to 90 70 KT MPH at 10,000 feet. If an enroute obstruction dictates the use of a steep climb angle, climb at 75-MPH with flaps retracted.

NOTE

Steep climbs at low speeds should be of short duration to improve engine cooling.

CRUISE.

Normal cruising is done at power settings up to 75% power. The engine RPM and corresponding fuel consumption for various altitudes can be determined by using your Cessna Power Computer or the Operational Data in Section VI.

The Operational Data in Section VI shows the increased range and improved fuel economy that is obtainable when operating at lower power settings and higher altitudes. The use of lower power settings and the selection of cruise altitude on the basis of the most favorable wind conditions are significant factors that should be considered on every trip to reduce fuel consumption.

The Cruise Performance table on the following page shows the true airspeed and miles per gallon during cruise for various altitudes and percent powers. This table should be used as a guide, along with the available winds aloft information, to determine the most favorable altitude and power setting for a given trip.

	RUISE		AWK			
	75% P	OWER	65% P	OWER	55% P	OWER
ALTITUDE	TASKT	MPG/	TASK7	MPGK	TASK	MP6
Sea Level	128///	13.4	121/45	16.8	11196	15.0
4000 Feet	133/16	18.0	1 25 /09	15.1	114 99	15.5
8000 Feet	138/20	16.6	130-112	15.6	117/02	15.9

To achieve the lean mixture fuel consumption figures shown in Section VI, the mixture should be leaned as follows:

- (1) Pull the mixture control out until engine RPM peaks and begins to fall off.
- (2) Enrichen slightly back to peak RPM.

For best fuel economy at 75% power or less, operate at the leanest mixture that results in smooth engine operation or at 50 RPM on the lean side of the peak RPM, whichever occurs first. This will result in approximately 5% greater range than shown in this manual.

Carburetor ice, as evidenced by an unexplained drop in RPM, can be removed by application of full carburetor heat. Upon regaining the original RPM (with heat off), use the minimum amount of heat (by trial and error) to prevent ice from forming. Since the heated air causes a richer mixture, readjust the mixture setting when carburetor heat is to be used continuously in cruise flight.

The use of full carburetor heat is recommended during flight in heavy rain to avoid the possibility of engine stoppage due to excessive water ingestion or carburetor ice. The mixture setting should be readjusted for smoothest operation.

In extremely heavy rain, the use of partial carburetor heat (control approximately 2/3 out), and part throttle (closed at least one inch), may

be necessary to retain adequate power. Power changes should be made cautiously followed by prompt adjustment of the mixture for smoothest operation.

STALLS.

The stall characteristics are conventional and aural warning is provided by a stall warning horn which sounds between 5 and 10 MpH above the stall in all configurations.

Power-off stall speeds at maximum gross weight and aft c. g. position are presented on page 6-2 as calibrated airspeeds since indicated airspeeds are unreliable near the stall.

SPINS.

Intentional spins are approved in this aircraft in the Utility Category only. Although this aircraft is inherently resistant to spins, the following techniques may be used to perform intentional spins for training or practice. To obtain a clean entry, decelerate the aircraft at a faster rate than is used for stalls. Then, just as the stall occurs, apply full up elevator, full rudder in the desired spin direction, and momentarily use full engine power. As the aircraft begins to spin, reduce the power to idle and maintain full pro-spin elevator and rudder deflections. The application of ailerons in the direction of the desired spin may also help obtain a clean entry.

During extended spins of two to three turns or more, the spin will tend to change into a spiral, particularly to the right. This will be accompanied by an increase in airspeed and gravity loads on the aircraft. If this occurs, recovery should be accomplished quickly by leveling the wings and recovering from the resulting dive.

To recover from an intentional or inadvertent spin, use the following procedure:

- (1) Retard throttle to idle position.
- (2) Apply full rudder opposite to the direction of rotation.
- (3) After one-fourth turn, move the control wheel forward of neutral in a brisk motion.

(4) As the rotation stops, neutralize the rudder, and make a smooth recovery from the resulting dive.

Intentional spins with flaps extended are prohibited.

LANDINGS.

Normal landings are made power-off with any flap setting desired. Steep slips should be avoided with flap settings greater than 20° due to a slight tendency for the elevator to oscillate under certain combinations of airspeed, sideslip angle, and center of gravity loadings.

NOTE

Carburetor heat should be applied prior to any significant reduction or closing of the throttle.

NORMAL LANDING.

Landings should be made on the main wheels first to reduce the landing speed and subsequent need for braking in the landing roll. The nose wheel is lowered to the runway gently after the speed has diminshed to avoid unnecessary nose gear loads. This procedure is especially important in rough or soft field landings.

SHORT FIELD LANDING.

W. For short field landings, make a power-off approach at approximately 70 MPH indicated airspeed with 40° of flaps. Touchdown should be made on the main wheels first. Immediately after touchdown, lower the nose gear to the ground and apply heavy braking as required. For maximum brake effectiveness after all three wheels are on the ground, retract the flaps, hold full nose up elevator and apply maximum possible brake pressure without sliding the tires.

CROSSWIND LANDING.

When landing in a strong crosswind, use the minimum flap setting required for the field length. If flap settings greater than 20° are used in sideslips with full rudder deflection, some elevator oscillation may be felt at normal approach speeds. However, this does not affect control of the aircraft. Although the crab or combination method of drift correction

o'may be used, the wing-low method gives the best control. After touchdown, hold a straight course with the steerable nose wheel and occasional braking if necessary.

The maximum allowable crosswind velocity is dependent upon pilot capability rather than aircraft limitations. With average pilot technique, direct crosswinds of 15 knots can be handled with safety.

BALKED LANDING.

In a balked landing (go-around) climb, reduce the wing flap setting to 20° immediately after full power is applied. If the flaps were extended to 40°, the reduction to 20° may be approximated by placing the flap switch in the UP position for two seconds and then returning the switch to neutral. If obstacles must be cleared during the go-around climb, leave the wing flaps in the 10° to 20° range and maintain a climb speed of 65 to 75 MPH until the obstacles are cleared. Above 3000 feet, lean the mixture to obtain maximum RPM. After clearing any obstacles, the flaps may be retracted as the aircraft accelerates to the normal flaps-up climb speed of 80 to 90 MPH.

COLD WEATHER OPERATION.

STARTING.

Prior to starting on a cold morning, it is advisable to pull the propeller through several times by hand to "break loose" or "limber" the oil, thus conserving battery energy.

NOTE

When pulling the propeller through by hand, treat it as if the ignition switch is turned on. A loose or broken ground wire on either magneto could cause the engine to fire.

In extremely cold (0°F and lower) weather, the use of an external preheater and an external power source are recommended whenever possible to obtain positive starting and to reduce wear and abuse to the engine and electrical system. Pre-heat will thaw the oil trapped in the oil cooler, which probably will be congealed prior to starting in extremely cold temperatures. When using an external power source, the position of the master switch is important. Refer to Section VII under Ground Service Plug Receptacle for operating details.

NOISE ABATEMENT.

Increased emphasis on improving the quality of our environment requires renewed effort on the part of all pilots to minimize the effect of aircraft noise on the public.

We, as pilots, can demonstrate our concern for environmental improvement, by application of the following suggested procedures, and thereby tend to build public support for aviation:

(1) Pilots operating aircraft under VFR over outdoor assemblies of persons, recreational and park areas, and other noise-sensitive areas should make every effort to fly not less than 2,000 feet above the surface, weather permitting, even though flight at a lower level may be consistent with the provisions of government regulations.

(2) During departure from or approach to an airport, climb after

(2) During departure from or approach to an airport, climb after take-off and descent for landing should be made so as to avoid prolonged flight at low altitude near noise-sensitive areas.

NOTE

The above recommended procedures do not apply where they would conflict with Air Traffic Control clearances or instructions, or where, in the pilot's judgement, an altitude of less than 2,000 feet is necessary for him to adequately exercise his duty to see and avoid other aircraft.

EMERGENCY PROCEDURES

Emergencies caused by aircraft or engine malfunctions are extremely rare if proper pre-flight inspections and maintenance are practiced. Enroute weather emergencies can be minimized or eliminated by careful flight planning and good judgement when unexpected weather is encountered. However, should an emergency arise the basic guidelines described in this section should be considered and applied as necessary to correct the problem.

ENGINE FAILURE.

ENGINE FAILURE AFTER TAKE-OFF.

Prompt lowering of the nose to maintain airspeed and establish a glide attitude is the first response to an engine failure after take-off. In most cases, the landing should be planned straight ahead with only small changes in direction to avoid obstructions. Altitude and airspeed are seldom sufficient to execute a 180° gliding turn necessary to return to the runway. The following procedures assume that adequate time exists to secure the fuel and ignition systems prior to touchdown.

- (1) Airspeed -- 存5 水石(flaps UP).
- (2) Mixture -- IDLE CUT-OFF.
- (3) Fuel Selector Valve -- OFF,
- (4) Ignition Switch -- OFF.
- (5) Wing Flaps -- AS REQUIRED (40° recommended).
- (6) Master Switch -- OFF.

ENGINE FAILURE DURING FLIGHT.

While gliding toward a suitable landing area, an effort should be made to identify the cause of the failure. If time permits, and an engine restart

is feasible, proceed as follows:

(1) Airspeed -- 80 MPH.

(2) Carburetor Heat -- ON.

(3) Fuel Selector Valve -- BOTH.

(4) Mixture -- RICH.

(5) Ignition Switch -- BOTH (or START if propeller is not windmilling)

(6) Primer -- IN and LOCKED.

If the engine cannot be restarted, a forced landing without power must be executed. A recommended procedure for this is given in the following paragraph.

FORCED LANDINGS.

EMERGENCY LANDING WITHOUT ENGINE POWER.

If all attempts to restart the engine fail and a forced landing is imminent, select a suitable field and prepare for the landing as follows:

(1) Airspeed -- 75 MPH (flaps UP).

(2) Mixture -- IDLE CUT-OFF.

(3) Fuel Selector Valve -- OFF.

(4) Ignition Switch -- OFF.

(5) Wing Flaps -- AS REQUIRED (40° recommended).

(6) Master Switch -- OFF.

(7) Doors -- UNLATCH PRIOR TO TOUCHDOWN.

(8) Touchdown -- SLIGHTLY TAIL LOW.

(9) Brakes -- APPLY HEAVILY.

PRECAUTIONARY LANDING WITH ENGINE POWER.

Before attempting an "off airport" landing, one should drag the landing area at a safe but low altitude to inspect the terrain for obstructions and surface conditions, proceeding as follows:

- (1) Drag over selected field with flaps 20° and 70 MPH airspeed, noting the preferred area for touchdown for the next landing approach. Then retract flaps upon reaching a safe altitude and airspeed.
- (2) Radio, Electrical Switches -- OFF.

(3) Wing Flaps -- 40° (on final approach).

(4) Airspeed -- 70 MPH.

(5) Master Switch -- OFF.

(6) Doors -- UNLATCH PRIOR TO TOUCHDOWN.

(7) Touchdown -- SLIGHTLY TAIL LOW.

(8) Ignition Switch -- OFF.

(9) Brakes -- APPLY HEAVILY.

DITCHING.

Prepare for ditching by securing or jettisoning heavy objects located in the baggage area, and collect folded coats or cushions for protection of occupant's face at touchdown. Transmit Mayday message on 121.5 MHz. giving location and intentions.

Plan approach into wind if winds are high and seas are heavy.
 With heavy swells and light wind, land parallel to swells.

(2) Approach with flaps 40° and sufficient power for a 300 ft./min. rate of descent at 70 MPH <1/7.5

(3) Unlatch the cabin doors,

(4) Maintain a continuous descent until touchdown in level attitude. Avoid a landing flare because of difficulty in judging aircraft height over a water surface.

(5) Place folded coat or cushion in front of face at time of touchdown,

(6) Evacuate aircraft through cabin doors. If necessary, open window to flood cabin compartment for equalizing pressure so that door can be opened.

(7) Inflate life vests and raft (if available) after evacuation of cabin. The aircraft cannot be depended on for flotation for more than a few minutes.

FIRES.

ENGINE FIRE DURING START ON GROUND.

Improper starting procedures during a difficult cold weather start can cause a backfire which could ignite fuel that has accumulated in the intake duct. In this event, proceed as follows:

 Continue cranking in an attempt to get a start which would suck the flames and accumulated fuel through the carburetor and into the engine.

(2) If the start is successful, run the engine at 1700 RPM for a few

minutes before shutting it down to inspect the damage.

(3) If engine start is unsuccessful, continue cranking for two or three minutes with throttle full open while ground attendants obtain fire extinguishers.

ومعتبرة والمتعدد والمترازين والمدروقة والمتعددة

(4) When ready to extinguish fire, discontinue cranking and turn off master switch, ignition switch, and fuel selector valve.

- (5) Smother flames with fire extinguisher, seat cushion, wool blanket, or loose dirt. If practical, try to remove carburetor air filter if it is ablaze.
- (6) Make a thorough inspection of fire damage, and repair or replace damaged components before conducting another flight.

ENGINE FIRE IN FLIGHT.

Although engine fires are extremely rare in flight, the following steps should be taken if one is encountered:

- (1) Mixture -- IDLE CUT-OFF.
- (2) Fuel Selector Valve -- OFF.
- (3) Master Switch -- OFF.
- (4) Cabin Heat and Air -- OFF (except overhead vents).
- (5) Airspeed -- 120 MPH. If fire is not extinguished, increase glide speed to find an airspeed which will provide an incombustible mixture.

Execute a forced landing as outlined in preceding paragraphs.

ELECTRICAL FIRE IN FLIGHT.

The initial indication of an electrical fire is usually the odor of burning insulation. The following procedure should then be used:

- (1) Master Switch -- OFF.
- (2) All Radio/Electrical Switches -- OFF.
- (3) Vents/Cabin Air/Heat -- CLOSED.
- (4) Fire Extinguisher -- ACTIVATE (if available).

If fire appears out and electrical power is necessary for continuance of flight:

- (5) Master Switch -- ON.
- (6) Circuit Breakers -- CHECK for faulty circuit, do not reset.
- (7) Radio/Electrical Switches -- ON one at a time, with delay after each until short circuit is localized.

(8) Vents/Cabin Air/Heat -- OPEN when it is ascertained that fire is completely extinguished.

DISORIENTATION IN CLOUDS.

In the event of a vacuum system failure during flight in marginal weather, the directional gyro and gyro horizon will be disabled, and the pilot will have to rely on the turn coordinator or the turn and bank indicator if he inadvertently flies into clouds. The following instructions assume that only the electrically-powered turn coordinator or the turn and bank indicator is operative, and that the pilot is not completely proficient in partial panel instrument flying.

EXECUTING A 180° TURN IN CLOUDS.

Upon entering the clouds, an immediate plan should be made to turn back as follows:

- Note the time of the minute hand and observe the position of the sweep second hand on the clock.
- (2) When the sweep second hand indicates the nearest half-minute, initiate a standard rate left turn, holding the turn coordinator symbolic aircraft wing opposite the lower left index mark for 60 seconds. Then roll back to level flight by leveling the miniature aircraft.
- (3) Check accuracy of the turn by observing the compass heading which should be the reciprocal of the original heading.
- (4) If necessary, adjust heading primarily with skidding motions rather than rolling motions so that the compass will read more accurately.
- (5) Maintain altitude and airspeed by cautious application of elevator control. Avoid overcontrolling by keeping the hands off the control wheel and steering only with rudder.

EMERGENCY LET-DOWNS THROUGH CLOUDS.

If possible, obtain radio clearance for an emergency descent through clouds. To guard against a spiral dive, choose an easterly or westerly heading to minimize compass card swings due to changing bank angles. In addition, keep hands off the control wheel and steer a straight course with rudder control by monitoring the turn coordinator. Occasionally check the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let-

down condition as follows:

- Apply full rich mixture.
- (2) Use full carburetor heat.
- (3) Reduce power to set up a 500 to 800 ft./min. rate of descent,
- (4) Adjust the elevator trim tab for a stabilized descent at 80 to 90
- (5) Keep hands off the control wheel.
- (6) Monitor turn coordinator and make corrections by rudder alone.
- (7) Check trend of compass card movement and make cautious corrections with rudder to stop the turn.
- (8) Upon breaking out of clouds, resume normal cruising flight.

RECOVERY FROM A SPIRAL DIVE.

If a spiral is encountered, proceed as follows:

- Close the throttle.
- (2) Stop the turn by using coordinated alleron and rudder control to align the symbolic aircraft in the turn coordinator with the horizon reference line.
- (3) Cautiously apply elevator back pressure to slowly reduce the indicated airspeed to 90 MPH.
- (4) Adjust the elevator trim control to maintain a 90 MPH glide.
- (5) Keep hands off the control wheel, using rudder control to hold a straight heading.
- (6) Apply carburetor heat.
- (7) Clear engine occasionally, but avoid using enough power to disturb the trimmed glide.
- (8) Upon breaking out of clouds, apply normal cruising power and resume flight.

FLIGHT IN ICING CONDITIONS.

Although flying in known icing conditions is prohibited, an unexpected icing encounter should be handled as follows:

- (1) Turn pitot heat switch ON (if installed).
- (2) Turn back or change altitude to obtain an outside air temperature that is less conducive to icing.
- (3) Pull cabin heat control full out and open defroster outlet to obtain maximum windshield defroster airflow. Adjust cabin air control to

get maximum defroster heat and airflow.

(4) Open the throttle to increase engine speed and minimize ice

build-up on propeller blades.

(5) Watch for signs of carburetor air filter ice and apply carburetor heat as required. An unexplained loss in engine speed could be caused by carburetor ice or air intake filter ice. Lean the mixture for maximum RPM if carburetor heat is used continuously.

(6) Plan a landing at the nearest airport. With an extremely rapid

ice build-up, select a suitable "off airport" landing site.

(7) With an ice accumulation of 1/4 inch or more on the wing leading edges, be prepared for significantly higher stall speed.

(8) Leave wing flaps retracted. With a severe ice build-up on the horizontal tail, the change in wing wake airflow direction caused by wing flap extension could result in a loss of elevator effectiveness.

(9) Open left window and, if practical, scrape ice from a portion of the windshield for visibility in the landing approach.

(10) Perform a landing approach using a forward slip, if necessary,

for improved visibility. K75
(11) Approach at 75 to 85 MPH, depending upon the amount of ice accumulation.

(12) Perform a landing in level attitude.

ROUGH ENGINE OPERATION OR LOSS OF POWER.

CARBURETOR ICING.

A gradual loss of RPM and eventual engine roughness may result from the formation of carburetor ice. To clear the ice, apply full throttle and pull the carburetor heat knob full out until the engine runs smoothly; then remove carburetor heat and readjust the throttle. If conditions require the continued use of carburetor heat in cruise flight, use the minimum amount of heat necessary to prevent ice from forming and lean the mixture slightly for smoothest engine operation.

SPARK PLUG FOULING.

A slight engine roughness in flight may be caused by one or more spark plugs becoming fouled by carbon or lead deposits. This may be verified by turning the ignition switch momentarily from BOTH to either L or R position. An obvious power loss in single ignition operation is evidence of spark plug or magneto trouble. Assuming that spark plugs are the more likely cause, lean the mixture to the normal lean setting for cruising flight. If the problem does not clear up in several minutes, determine if a richer mixture setting will produce smoother operation. If not, proceed to the nearest airport for repairs using the BOTH position of the ignition switch unless extreme roughness dictates the use of a single ignition position.

MAGNETO MALFUNCTION.

A sudden engine roughness or misfiring is usually evidence of magneto problems. Switching from BOTH to either L or R ignition switch position will identify which magneto is malfunctioning. Select different power settings and enrichen the mixture to determine if continued operation on BOTH magnetos is practicable. If not, switch to the good magneto and proceed to the nearest airport for repairs.

LOW OIL PRESSURE.

If low oil pressure is accompanied by normal oil temperature, there is a possibility the oil pressure gage or relief valve is malfunctioning. A leak in the line to the gage is not necessarily cause for an immediate precautionary landing because an orifice in this line will prevent a sudden loss of oil from the engine sump. However, a landing at the nearest airport would be advisable to inspect the source of trouble.

If a total loss of oil pressure is accompanied by a rise in oil temperature, there is good reason to suspect an engine failure is imminent. Reduce engine power immediately and select a suitable forced landing field. Leave the engine running at low power during the approach, using only the minimum power required to reach the desired touchdown spot.

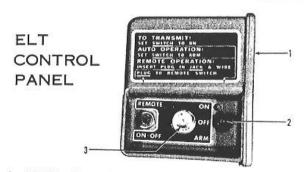
ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS.

Malfunctions in the electrical power supply system can be detected by periodic monitoring of the ammeter and over-voltage warning light; however, the cause of these malfunctions is usually difficult to determine. A broken alternator drive belt or wiring is most likely the cause of alternator failures, although other factors could cause the problem. A damaged or improperly adjusted voltage regulator can also cause malfunctions. Problems of this nature constitute an electrical emergency and should be dealt with immediately. Electrical power malfunctions usually fall into two categor***: excessive rate of charge and insufficient rate of charge.

the paragraphs below describe the recommended remedy for each situation.

EXCESSIVE RATE OF CHARGE.

After engine starting and heavy electrical usage at low engine speeds (such as extended taxiing) the battery condition will be low enough to accept above normal charging during the initial part of a flight. However, after thirty minutes of cruising flight, the ammeter should be indicating less than two needle widths of charging current. If the charging rate were to remain above this value on a long flight, the battery would overheat and evaporate the electrolyte at an excessive rate. Electronic components in the electrical system could be adversely affected by higher than normal voltage if a faulty voltage regulator setting is causing the overcharging. To preclude these possibilities, an over-voltage sensor will automatically shut down the alternator and the over-voltage warning light will illuminate if the charge voltage reaches approximately 16 volts. Assuming that the malfunction was only momentary, an attempt should be made to reactivate the alternator system. To do this, turn both sides of the master switch off and then on again. If the problem no longer exists, normal alternator charging will resume and the warning light will go off. If the light comes on again, a malfunction is confirmed. In this event, the flight should be terminated and/or the current drain on the battery minimized because the battery can supply the electrical system for only a limited period of time. If the emergency occurs at night, power must be conserved for later use of the landing light and flaps during landing.


INSUFFICIENT RATE OF CHARGE

If the ammeter indicates a continuous discharge rate in flight, the alternator is not supplying power to the system and should be shut down since the alternator field circuit may be placing an unnecessary load on the system. All non-essential equipment should be turned off and the flight terminated as soon as practical.

EMERGENCY LOCATOR TRANSMITTER (ELT).

The ELT consists of a self-contained dual-frequency radio transmitter and battery power supply, and is activated by an impact of 5g or more as may be experienced in a crash landing. The ELT emits an omni-directional signal on the international distress frequencies of 121.5 and 243.0 MHz. General aviation and commercial aircraft, the FAA-and CAP

- 1. COVER Removable for access to battery.
- 2. FUNCTION SELECTOR SWITCH (3-position toggle switch):
 - ON Activates transmitter instantly. Used for test purposes and if "g" switch is inoperative.
 - OFF Deactivates transmitter. Used during shipping, storage and following rescue.
 - ARM Activates transmitter only when "g" switch receives 5g or more impact.
- ANTENNA RECEPTACLE Connection to antenna mounted on top of the tailcone.

Figure 3-1.

monitor 121.5 MHz, and 243.0 MHz is monitored by the military. Following a crash landing, the ELT will provide line-of-sight transmission up to 100 miles at 10,000 feet. The duration of ELT transmissions is affected by ambient temperature. At temperatures of +70° to +130°F, continuous transmission for 115 hours can be expected; a temperature of -40°F will shorten the duration to 70 hours.

The ELT is readily identified as a bright orange unit mounted behind a cover in the aft baggage compartment on the right side of the fuselage.

PROPERTY CONTROL OF A PROPERTY CONTROL OF THE SECOND STATES OF THE SECON

'o gain access to the unit, pull out on the black fasteners on the bottom of the cover and remove the cover. The ELT is operated by a control panel at the forward facing end of the unit. (see figure 3-1).

ELT OPERATION.

- (1) NORMAL OPERATION: As long as the function selector switch remains in the ARM position, the ELT automatically activates following an impact of 5 g or more over a short period of time.
- (2) ELT FAILURE: If "g" switch actuation is questioned following a minor crash landing, gain access to the ELT and place the function selector switch in the ON position.
- (3) PRIOR TO SIGHTING RESCUE AIRCRAFT: Conserve aircraft battery. Do not activate radio transceiver.
- (4) AFTER SIGHTING RESCUE AIRCRAFT: Place ELT function selector switch in the OFF position, preventing radio interference. Attempt contact with rescue aircraft with the radio transceiver set to a frequency of 121.5 MHz. If no contact is established, return the function selector switch to ON immediately.
- (5) FOLLOWING RESCUE: Place ELT function selector switch in the OFF position, terminating emergency transmissions.
- (6) INADVERTENT ACTIVATION: Following a lightning strike or an exceptionally hard landing, the ELT may activate although no emergency exists. Select 121.5 MHz on your radio transceiver. If the ELT can be heard transmitting, place the function selector switch in the OFF position; then immediately return the switch to ARM.

OPERATING LIMITATIONS

OPERATIONS AUTHORIZED.

CALLED TO CONTRACTOR STATE OF THE PROPERTY OF

X

Your Cessna exceeds the requirements of airworthiness as set forth by the United States Government, and is certificated under FAA Type Certificate No. 3A12 as Cessna Model No. 172M.

The aircraft may be equipped for day, night, VFR, or IFR operation. Your Cessna Dealer will be happy to assist you in selecting equipment best suited to your needs.

Your aircraft must be operated in accordance with all FAA-approved markings and placards in the aircraft. If there is any information in this section which contradicts the FAA-approved markings and placards, it is to be disregarded.

MANEUVERS - NORMAL CATEGORY.

This aircraft is certificated in both the normal and utility category. The normal category is applicable to aircraft intended for non-aerobatic operations. These include any maneuvers incidental to normal flying, stalls (except whip stalls) and turns in which the angle of bank is not more than 60°. In connection with the foregoing, the following gross weight and flight load factors apply:

Gross Weight	*	33	10	100		i.	*	*	100	33	85 85	*	2300 lbs
Flight Load Factor													
*Flaps Up					4	7		ř	7		+3	. 8	-1,52
*Flaps Down					Ŷ		·		2	9	+3	.0	

*The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads.

MANEUVERS - UTILITY CATEGORY.

This aircraft is not designed for purely aerobatic flight. However, in the acquisition of various certificates such as commercial pilot, instrument pilot and flight instructor, certain maneuvers are required by the FAA. All of these maneuvers are permitted in this aircraft when operated in the utility category. In connection with the utility category, the following gross weight and flight load factors apply, with maximum entry speeds for maneuvers as shown:

Gross Weight Flight Load Factor			•	9	٠		ě	•	•				2000 lbs
Flaps Up		30*			30	*3				93	40	.+4.4	-1.76
Flaps Down .	,	22			25	*0		-				.+3.0	

In the utility category, the baggage compartment and rear seat must not be occupied. No aerobatic maneuvers are approved except those list ed below:

MANEUVER								R	E	CO	M	MI	ENDED ENTRY SPEED*
Chandelles.					12 14			 					120 mph (104 knots)
	•			. 4									112 mnh / 07 l1
Statis (Excep	10	WI	пp	S	talis).				-		38	Slow Deceleration

^{*}Abrupt use of the controls is prohibited above 112 MPH.

Aerobatics that may impose high loads should not be attempted. The important thing to bear in mind in flight maneuvers is that the aircraft is clean in aerodynamic design and will build up speed quickly with the nose down. Proper speed control is an essential requirement for execution of any maneuver, and care should always be exercised to avoid excessive speed which in turn can impose excessive loads. In the execution of all maneuvers, avoid abrupt use of controls. Intentional spins with flaps extended are prohibited.

AND THE PROPERTY OF THE PROPER

AIRSPEED LIMITATIONS (CAS).

The following is a list of the certificated calibrated airspeed (CAS) limitations for the aircraft.

Never Exceed Speed (glide or dive, smooth air)	3		. 158102 MPH
Maximum Structural Cruising Speed			126145 MPH
Maximum Speed, Flaps Extended	¥		. 87-100-MPH
*Maneuvering Speed		60	. 97 112 MPH

^{*}The maximum speed at which you may use abrupt control travel.

AIRSPEED INDICATOR MARKINGS.

The following is a list of the certificated calibrated airspeed markyings (CAS) for the aircraft.

Never Exceed (glide or dive,	sm	00	th air) . 1.58-182-MPH (red line)
Caution Range			12(0145, 189 MDW (wallow and) 158
Normal Operating Range .			-3.3 -126 fil=145 MPH (green arc)
Flap Operating Range		10	47-8754=100 MPH (white arc)

ENGINE OPERATION LIMITATIONS.

Power and Speed 150 BHP at 2700 RPM

ENGINE INSTRUMENT MARKINGS.

OIL TEMPERATURE GAGE.

OIL PRESSURE GAGE.

..........

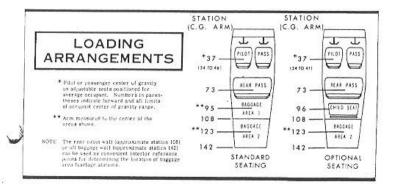
and the second second and the second

WEIGHT AND BALANCE.

The following information will enable you to operate your Cessna within the prescribed weight and center of gravity limitations. To figure weight and balance, use the Sample Loading Problem, Loading Graph, and Center of Gravity Moment Envelope as follows:

Take the licensed empty weight and moment from appropriate weight and balance records carried in your aircraft, and write them down in the column titled YOUR AIRPLANE on the Sample Loading Problem.

NOTE

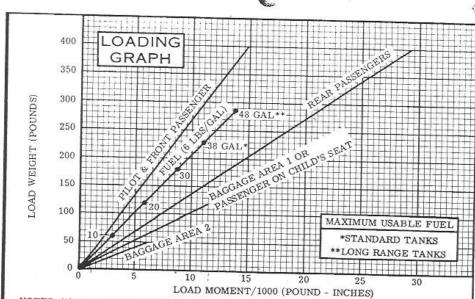

The licensed empty weight and moment are recorded on the Weight and Balance and Installed Equipment Data sheet, or on revised weight and balance records, and are included in the aircraft file. In addition to the licensed empty weight and moment noted on these records, the c.g. arm (fuselage station) is also shown, but need not be used on the Sample Loading Problem. The moment which is shown must be divided by 1000 and this value used as the moment/1000 on the loading problem.

Use the Loading Graph to determine the moment/1000 for each additional item to be carried, then list these on the loading problem.

NOTE

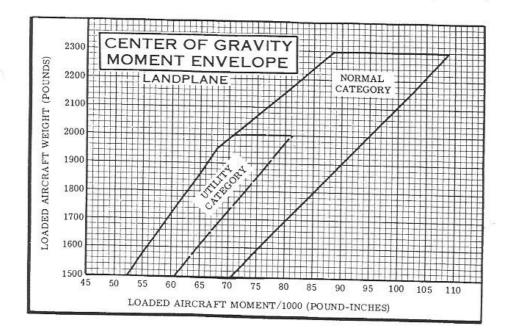
Loading Graph information for the pilot, passengers and baggage is based on seats positioned for average occupants and baggage loaded in the center of the baggage area as shown on the Loading Arrangements diagram. For loadings which may differ from these, the Sample Loading Problem lists fuselage stations for these items to indicate their forward and aft c.g. range limitation (seat travel or baggage area limitation). Additional moment calculations, based on the actual weight and c.g. arm (fuselage station) of the item being loaded, must be made if the position of the load is different from that shown on the Loading Graph.

Total the weights and moments/1000 and plot these values on the Center of Gravity Moment Envelope to determine whether the point falls within the envelope, and if the loading is acceptable.



SAMPLE LOADING PROBLEM		LANE	2	UR LANE
	Weight (lbs.)	Moment (lbins. /1000)	Weight (lbs.)	Moment (lbins /1000)
Licensed Empty Weight (Use the data pertaining to your airplane as it is presently equipped. Includes unusable fuel.)	1366	53.8		
 Oil (8 Qts The weight of full oil may be used for all calculations. 8 Qts. = 15 Lbs. at -0.2 Moment/1000). 	15	-0.2	15	-0.2
3. Usable Fuel (At 6 Lbs./Gal.)				
Standard Tanks (38 Gal. Maximum)	228	10.9		14
Long Range Tanks (48 Gal. Maximum)				
4. Pilot and Front Passenger (Station 34 to 46)	340	12.6		
5. Rear Passengers	340	24.8		
6.*Baggage Area 1 or Passenger on Child's Seat (Station 82 to 108) 120 Lbs. Max	11	1.0		
7.*Baggage Area 2 (Station 108 to 142) 50 Lbs. Max				
B. TOTAL WEIGHT AND MOMENT	2300	102.9		

Locate this point (2300 at 102.9) on the Center of Gravity Moment Envelope, and since this point falls within the envelope, the loading is acceptable.


NOTE

* The maximum allowable combined weight capacity for baggage areas 1 and 2 is 120 lbs

NOTES: (1) Line representing adjustable seats shows the pilot or passenger center of gravity on adjustable seats positioned for an average occupant. Refer to the Loading Arrangements diagram for forward and aft limits of occupant c.g. range.

(2) Engine Oil: 8 Qts. = 15 Lbs. at -0.2 Moment/1000.

CARE OF THE AIRPLANE

If your airplane is to retain that new plane performance and dependability, certain inspection and maintenance requirements must be followed. It is wise to follow a planned schedule of lubrication and preventive maintenance based on climatic and flying conditions encountered in your locality.

Keep in touch with your Cessna Dealer and take advantage of his know-ledge and experience. He knows your airplane and how to maintain it. He will remind you when lubrications and oil changes are necessary, and about other seasonal and periodic services.

GROUND HANDLING.

The airplane is most easily and safely maneuvered by hand with the tow-bar attached to the nose wheel. When towing with a vehicle, do not exceed the nose gear turning angle of 30° either side of center, or damage to the gear will result. If the airplane is towed or pushed over a rough surface during hangaring, watch that the normal cushioning action of the nose strut does not cause excessive vertical movement of the tail and the resulting contact with low hangar doors or structure. A flat nose wheel tire or deflated strut will also increase tail height.

MOORING YOUR AIRPLANE.

Proper tie-down procedure is your best precaution against damage to your parked airplane by gusty or strong winds. To tie down your airplane securely, proceed as follows:

- (1) Set the parking brake and install the control wheel lock.
- (2) Tie sufficiently strong ropes or chains (700 pounds tensile strength) to wing, tail and nose tie-down rings and secure each rope to a ramp tie-down.

(3) Install a surface control lock over the fin and rudder.

(4) Install a pitot tube cover.

WINDSHIELD - WINDOWS.

The plastic windshield and windows should be cleaned with an aircraft windshield cleaner. Apply the cleaner sparingly with soft cloths, and rub with moderate pressure until all dirt, oil scum and bug stains are removed. Allow the cleaner to dry, then wipe it off with soft flannel cloths.

If a windshield cleaner is not available, the plastic can be cleaned with soft cloths moistened with Stoddard solvent to remove oil and grease.

NOTE

Never use gasoline, benzine, alcohol, acetone, carbon tetrachloride, fire extinguisher or anti-ice fluid, lacquer thinner or glass cleaner to clean the plastic. These materials will attack the plastic and may cause it to craze.

Follow by carefully washing with a mild detergent and plenty of water. Rinse thoroughly, then dry with a clean moist chamois. Do not rub the plastic with a dry cloth since this builds up an electrostatic charge which attracts dust. Waxing with a good commercial wax will finish the cleaning job. A thin, even coat of wax, polished out by hand with clean soft flannel cloths, will fill in minor scratches and help prevent further scratching.

Do not use a canvas cover on the windshield unless freezing rain or sleet is anticipated since the cover may scratch the plastic surface.

PAINTED SURFACES.

The painted exterior surfaces of your new Cessna have a durable, long lasting finish and, under normal conditions, require no polishing or buffing. Approximately 15 days are required for the paint to cure completely; in most cases, the curing period will have been completed prior to delivery of the airplane. In the event that polishing or buffing is required within the curing period, it is recommended that the work be done by someone experienced in handling uncured paint. Any Cessna Dealer can accomplish this work.

Wingston Color Col

Generally, the painted surfaces can be kept bright by washing with water and mild soap, followed by a rinse with water and drying with cloths or a chamois. Harsh or abrasive soaps or detergents which cause corrosion or scratches should never be used. Remove stubborn oil and grease with a cloth moistened with Stoddard solvent.

Waxing is unnecessary to keep the painted surfaces bright. However, if desired, the airplane may be waxed with a good automotive wax. A heavier coating of wax on the leading edges of the wings and tail and on the engine nose cap and propeller spinner will help reduce the abrasion encountered in these areas.

When the airplane is parked outside in cold climates and it is necessary to remove ice before flight, care should be taken to protect the painted surfaces during ice removal with chemical liquids. A 50-50 solution of isopropyl alcohol and water will satisfactorily remove ice accumulations without damaging the paint. A solution with more than 50% alcohol is harmful and should be avoided. While applying the de-icing solution, keep it away from the windshield and cabin windows since the alcohol will tack the plastic and may cause it to craze.

ALUMINUM SURFACES.

The clad aluminum surfaces of your Cessna may be washed with clear water to remove dirt; oil and grease may be removed with gasoline, naphtha, carbon tetrachloride or other non-alkaline solvents. Dulled aluminum surfaces may be cleaned effectively with an aircraft aluminum polish.

After cleaning, and periodically thereafter, waxing with a good automotive wax will preserve the bright appearance and retard corrosion. Regular waxing is especially recommended for airplanes operated in salt water areas as a protection against corrosion.

PROPELLER CARE.

Preflight inspection of propeller blades for nicks, and wiping them occasionally with an oily cloth to clean off grass and bug stains will assure long, trouble-free service. Small nicks on the propeller, particularly near the tips and on the leading edges, should be dressed out as soon as possible since these nicks produce stress concentrations, and if

ignored, may result in cracks. Never use an alkaline cleaner on the blades; remove grease and dirt with carbon tetrachloride or Stoddard solvent.

INTERIOR CARE.

To remove dust and loose dirt from the upholstery and carpet, clean the interior regularly with a vacuum cleaner.

Blot up any spilled liquid promptly, with cleansing tissue or rags. Don't pat the spot; press the blotting material firmly and hold it for several seconds. Continue blotting until no more liquid is taken up. Scrape off sticky materials with a dull knife, then spot-clean the area.

Oily spots may be cleaned with household spot removers, used sparingly. Before using any solvent, read the instructions on the container and test it on an obscure place on the fabric to be cleaned. Never saturate the fabric with a volatile solvent; it may damage the padding and backing materials.

Soiled upholstery and carpet may be cleaned with foam-type detergent, used according to the manufacturer's instructions. To minimize wetting the fabric, keep the foam as dry as possible and remove it with a vacuum cleaner.

If your airplane is equipped with leather seating, cleaning of the seats is accomplished using a soft cloth or sponge dipped in mild soap suds. The soap suds, used sparingly, will remove traces of dirt and grease. The soap should be removed with a clean damp cloth.

The plastic trim, headliner, instrument panel and control knobs need only be wiped off with a damp cloth. Oil and grease on the control wheel and control knobs can be removed with a cloth moistened with Stoddard solvent. Volatile solvents, such as mentioned in paragraphs on care of the windshield, must never be used since they soften and craze the plastic.

MAA PLATE/FINISH AND TRIM PLATE.

Information concerning the Type Certificate Number (TC), Production Certificate Number (PC), Model Number and Serial Number of your par-

icular aircraft can be found on the MAA (Manufacturers Aircraft Association) plate located on the lower part of the left forward door post.

A Finish and Trim plate contains a code describing the interior color scheme and exterior paint combination of the aircraft. The code may be used in conjunction with an applicable Parts Catalog if finish and trim information is needed. This plate is located adjacent to the MAA plate on the left forward door post.

AIRCRAFT FILE.

There are miscellaneous data, information and licenses that are a part of the aircraft file. The following is a checklist for that file. In addition, a periodic check should be made of the latest Federal Aviation Regulations to ensure that all data requirements are met.

- A. To be displayed in the aircraft at all times:
 - (1) Aircraft Airworthiness Certificate (FAA Form 8100-2).
 - (2) Aircraft Registration Certificate (FAA Form 8050-3).
 - (3) Aircraft Radio Station License, if transmitter installed (FCC Form 556).
- B. To be carried in the aircraft at all times:
 - (1) Weight and Balance, and associated papers (latest copy of the Repair and Alteration Form, FAA Form 337, if applicable).
 - (2) Aircraft Equipment List.
- C. To be made available upon request:
 - (1) Aircraft Log Book.
 - (2) Engine Log Book.

Most of the items listed are required by the United States Federal Aviation Regulations. Since the regulations of other nations may require other documents and data, owners of exported aircraft should check with their own aviation officials to determine their individual requirements.

Cessna recommends that these items, plus the Owner's Manual, Power Computer, Pilot's Checklist, Customer Care Program book and Customer Care Card, be carried in the aircraft at all times.

FLYABLE STORAGE.

Aircraft placed in non-operational storage for a maximum of 30 days or those which receive only intermittent operational use for the first 25 hours are considered in flyable storage status. Every seventh day during these periods, the propeller should be rotated by hand through five revolutions. This action "limbers" the oil and prevents any accumulation of corrosion on engine cylinder walls.

IMPORTANT

For maximum safety, check that the ignition switch is OFF, the throttle is closed, the mixture control is in the idle cut-off position, and the airplane is secured before rotating the propeller by hand. Do not stand within the arc of the propeller blades while turning the propeller.

After 30 days, the aircraft should be flown for 30 minutes or a ground runup should be made just long enough to produce an oil temperature with the lower green arc range. Excessive ground runup should be avoided.

Engine runup also helps to eliminate excessive accumulations of water in the fuel system and other air spaces in the engine. Keep fuel tanks full to minimize condensation in the tanks. Keep the battery fully charged to prevent the electrolyte from freezing in cold weather. If the aircraft is to be stored temporarily, or indefinitely, refer to the Service Manual for proper storage procedures.

INSPECTION REQUIREMENTS.

As required by Federal Aviation Regulations, all civil aircraft of U.S. registry must undergo a complete inspection (annual) each twelve calendar months. In addition to the required ANNUAL inspection, aircraft operated commercially (for hire) must have a complete inspection every 100 hours of operation.

In lieu of the above requirements, an aircraft may be inspected in accordance with a progressive inspection schedule, which allows the work load to be divided into smaller operations that can be accomplished in shorter time periods.

The CESSNA PROGRESSIVE CARE PROGRAM has been developed to provide a modern progressive inspection schedule that satisfies the complete aircraft inspection requirements of both the 100 HOUR and ANNUAL inspections as applicable to Cessna aircraft.

CESSNA PROGRESSIVE CARE.

The Cessna Progressive Care Program has been designed to help you realize maximum utilization of your aircraft at a minimum cost and down-time. Under this program, your aircraft is inspected and maintained in four operations at 50-hour intervals during a 200-hour period. The operations are recycled each 200 hours and are recorded in a specially provided Aircraft Inspection Log as each operation is conducted.

The Cessna Aircraft Company recommends Progressive Care for aircraft that are being flown 200 hours or more per year, and the 100-hour inspection for all other aircraft. The procedures for the Progressive Care Program and the 100-hour inspection have been carefully worked out by the factory and are followed by the Cessna Dealer Organization. The complete familiarity of Cessna Dealers with Cessna equipment and factory-approved procedures provides the highest level of service possible at lower cost to Cessna owners.

CESSNA CUSTOMER CARE PROGRAM.

Specific benefits and provisions of the CESSNA WARRANTY plus other important benefits for you are contained in your CUSTOMER CARE PROGRAM book supplied with your aircraft. You will want to thoroughly review your Customer Care Program book and keep it in your aircraft at all times.

Coupons attached to the Program book entitle you to an initial inspection and either a Progressive Care Operation No. 1 or the first 100-hour inspection within the first 6 months of ownership at no charge to you. If you take delivery from your Dealer, the initial inspection will have been performed before delivery of the aircraft to you. If you pick up your aircraft at the factory, plan to take it to your Dealer reasonably soon after you take delivery, so the initial inspection may be performed allowing the Dealer to make any minor adjustments which may be necessary.

You will also want to return to your Dealer either at 50 hours for your first Progressive Care Operation, or at 100 hours for your first 100-hour inspection depending on which program you choose to establish for your aircraft. While these important inspections will be performed for you by any Cessna Dealer, in most cases you will prefer to have the Dealer from whom you purchased the aircraft accomplish this work.

tinistration to attend to the contract of the

SERVICING REQUIREMENTS.

For quick and ready reference, quantities, materials, and specifications for frequently used service items (such as fuel, oil, etc.) are shown on the inside back cover of this manual.

In addition to the EXTERIOR INSPECTION covered in Section I, COMPLETE servicing, inspection, and test requirements for your aircraft are detailed in the aircraft Service Manual. The Service Manual outlines all items which require attention at 50, 100, and 200 hour intervals plus those items which require servicing, inspection, and/or testing at special intervals.

Since Cessna Dealers conduct all service, inspection, and test procedures in accordance with applicable Service Manual, it is recommended that you contact your Dealer concerning these requirements and begin scheduling your aircraft for service at the recommended intervals.

Cessna Progressive Care ensures that these requirements are accomplished at the required intervals to comply with the 100-hour or ANNUAL inspection as previously covered.

Depending on various flight operations, your local Government Aviation Agency may require additional service, inspections, or tests. For these regulatory requirements, owners should check with local aviation officials where the aircraft is being operated.

OWNER FOLLOW-UP SYSTEM.

Your Cessna Dealer has an Owner Follow-Up System to notify you when he receives information that applies to your Cessna. In addition, if you wish, you may choose to receive similar notification, in the form of Service Letters, directly from the Cessna Customer Services Department.

A subscription form is supplied in your Customer Care Program book for your use, should you choose to request this service. Your Cessna Dealer will be glad to supply you with details concerning these follow-up programs, and stands ready, through his Service Department, to supply you with fast, efficient, low-cost service.

PUBLICATIONS.

Various publications and flight operation aids are furnished in the aircraft when delivered from the factory. These items are listed below.

- CUSTOMER CARE PROGRAM BOOK
- OWNER'S MANUALS FOR YOUR AIRCRAFT
 AVIONICS AND AUTOPILOT
- POWER COMPUTER
- SALES AND SERVICE DEALER DIRECTORY

The following additional publications, plus many other supplies that are applicable to your aircraft, are available from your Cessna Dealer.

 SERVICE MANUALS AND PARTS CATALOGS FOR YOUR AIRCRAFT ENGINE AND ACCESSORIES AVIONICS AND AUTOPILOT

Your Cessna Dealer has a current catalog of all Customer Services Supplies that are available, many of which he keeps on hand. Supplies which are not in stock, he will be happy to order for you.

Section VI

OPERATIONAL DATA

The operational data shown on the following pages are compiled from actual tests with the aircraft and engine in good condition and using average piloting technique. You will find this data a valuable aid when planning your flights.

A power setting selected from the range chart usually will be more efficient than a random setting, since it will permit you to estimate your fuel consumption more accurately. You will find that using the charts and your Power Computer will pay dividends in overall efficiency.

Cruise and range performance shown in this section is based on the use of a McCauley 1C160/DTM7553 propeller and a standard equipped Skyhawk. Other conditions for the performance data are shown in the chart headings. Allowances for fuel reserve, headwinds, take-off and climb, and variations in mixture leaning technique should be made and are in addition to those shown on the chart. Other indeterminate variables such as carburetor metering characteristics, engine and propeller conditions, externally-mounted optional equipment and turbulence of the atmosphere may account for variations of 10% or more in maximum range.

Remember that the charts contained herein are based on standard day conditions. For more precise power, fuel consumption, and endurance information, consult the Cessna Power Computer supplied with your aircraft. With the Power Computer, you can easily take into account temperature variations from standard at any flight altitude.

AIRSPEED CORRECTION TABLE

K.75	IAS	秀	鹨	翌	- 70	80- 70	9 0 78	199	110	120	199	149
FLAPS UP	CAS	范	50	64- 56-	993	79	88	37/	均	117	127	197
FLAPS DOWN	CAS	粉	55	63- 55	為	81-	90	100	•	•	•	•

Figure 6-1.

STALL SPEEDS - MPH CAS

			ANGLE O	F BANK	
	CONDITION	0°	20°	40°	60°
	FLAPS UP	5450	59-57	6356	8170
2300 LBS, GROSS WEIGHT	FLAPS 10°	5245	84 47	59.51	7464
	FLAPS 40°	1943	81 44	56 49	64-60

Figure 6-2.

POWER OFF - AFT CG

	-	AKE-OF	F DISTA	TAKE-OFF DISTANCE FROM HARD SURFACE RUNWAY WITH FLAPS UP	HARD S	E FROM HARD SURFACE RUNWA	UNWAY	WITH FLAF	S UP
1	KIS	The state of the s	AT SEA I	AT SEA LEVEL & 59°F	AT 2500	AT 2500 FT. & 50°F	AT 5000	AT 5000 FT & 41"E	ATT 1160
NDS	AT 50°	WIND WIND KNOTS	GROUND	TOTAL TO CLEAR 50 FT OBS	GROUND	TOTAL TO CLEAR 50 FT OBS	CROUND	TO CLEAR	GROUND
8	5.3	2000	865 615 405	1525 1170 850	1040 750 · 505	1910 1485 1100	1255 920 630	2480	1565 1160
2	F10	0 0 0 30 0	630 435 275	1095 820 580	755 530 340	1325 1005 720	905 645 425	1625 1250 910	1120 810 505
9	50	0 10 20	435 290 175	780 570 385	520 355 215	920 680 470	625 430 270	1095	535
	NOTES:	-12	crease dista or operation of cobstacts	Directors distance 10% for each 25°F above Standard temperature for particular althodo. Por operature of particular althodo in the standard temperature for particular althodo in the standard in the standar	th 25"F abov	re standard ten	sperature for	r particular alt	tude.

MAXIMUM KAIE-OF-CLIMB DATA			2 4	7	1 1 1 1 1		1		3.0000	5007 40			l
ALEVEL & 89°F AT 5000 FT. & 41°F AT 10,000 FT. & 23°F RATE OF STOM AT 5000 FT. & 41°F AT 10,000 FT. & 23°F CLIMB OF FUEL. AT 5000 FT. & 41°F STOM AT 50°F STOM AT			Σ	X	Σ	KAI	E-O	F C	ME	30	ATA		
RATE OF GAL, K 7.5 RATE OF FROM K 7.5 KATE OF FROM K 7.5 K	AT	SEA	A LEVEL	3,65 g	AT 5	000 FT. &	3.17	AT 10	000 000				1
HATE OF GAL, AND OF PROPER OF PROPERTY AND	1	2			1			100	W. F. I. &	4 65	AT 15	5,000 FT.	200
840 1.0 \$\frac{7}{7}\$ 835 2.6 \$\frac{25}{20}\$ 838 3.6 \$\frac{25}{2}\$ 380 3.6 \$\frac{25}{2}\$ 315 1.0 \$\frac{7}{7}\$ 835 1.9 \$\frac{25}{2}\$ 380 2.9 \$\frac{25}{2}\$ 315	2 4	N N	CLIMB FT/MIN	OF FUEL USED	NS WE	RATE OF CLIMB FT/MIN	S.L. FUEL USED	Cat	RATE OF CLIMB FT/MIN	FUEL STL.	STX SM	RATE OF CLIMB FT/MIN	Eo F
1.0 77 610 2.2 77 380 3.6 57 155 1.0 7.7 825 1.9 27 570 2.9 57 315	46	特	645	1.0	部	435	2.6	\$	230	α,	1	00	1
840 1.0 77 630 2.2 77 57 570 2.9 54 315	1				1			20			63	2	4
1085 1.0 77 825 1.9 74 570 2.9 44 315	**	0	840	1.0	12	610	2.2	朴	380	3,6	4	155	
	00	272	1085	1.0	27	825	6.I	*	570	2.9	\$ \$	315	1

igure 6-3.

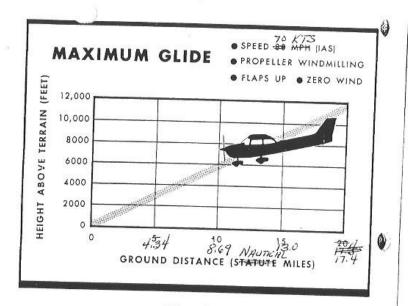


Figure 6-6.

6-6

was province and the section of the constitution of the section of

CRUISE PERFORMANCE SKYHAWK

Gross Weight- 2300 lbs, Standard Conditions Zero Wind Lean Mixture

NOTE: Maximum cruise is normally limited to 75% power. Cruise speeds for the standard Model 172 are 1 to 3 MPH lower than shown with the maximum difference accurring at higher powers.

			KTS		38 GAL (NO RESERVE)	48 GAL (N	O RESERVE)
ALTITUDE	RPM	% внр	TAS MPH	GAL/ HOUR	ENDR. HOURS	RANGE MILES NAUTICAL	ENDR. HOURS	RANGE VALTICE
2500	2700 2600 2500 2400 2300 2200	87 78 70 63 57 51	138// 128// 128/0	9.6 8.6 7.7 6 7.1 6.6 6.2	3.9 4.4 4.9 5.3 5.7 6.1	545 474 590 513 630547 655569 665578 685578	5.0 5.6 6.2 6.7 7.2 7.7	690600 nc 745647 7956 91 825717 840730 840730
5000	2700 2600 2500 2400 2300 2200	81 73 66 60 54 48	138/2 199/1 199/1 199/1 199/1 199/1	7.4 56.8 6.4	4.3 4.7 5.1 5.6 5.9 6.3	5 85 -5¢8 630.547 655.5¢9 675.5¢7 675.5¢7	5, 4 6, 0 6, 5 7, 0 7, 5 8, 0	740643 795491 830 721 850 739 855 743 850 739
7500	2700 2600 2500 2400 2300	76 69 63 57 51	138/2 183// 128/4 119/0 112/	67.6 97.1 86.6	4.5 5.0 5.4 5.8 6.1	630547 660,574 675587 685,595 685,595	5.7 6.3 6.8 7.3 7.8	795 691 835726 855 143 865752 865752
10,000	2700 2600 2500 2400 2300	72 66 59 54 48	18847 1 01 // 184/08 117/08 11096	7.3 6.8 6.4	4.8 5.2 5.6 6.0 6.3	665.578 686.595 6956.64 7006.65 7006.65	6. 1 6. 6 7. 1 7. 5 8. 0	840 736 860 747 875 740 880 745 880 745
2,500	2650 2500 2400	65 56 51	182// 5 182/0 (116/0 (06.5	5.3 5.8 6.2	695 <i>604</i> 710 <i>617</i> 710 <i>61</i> 7	6. 6 7. 3 7. 8	880 <i>76-5</i> 895 <i>77-8</i> 895 <i>77-8</i>

Figure 6-4.

LANDING DISTANCE ON HARD NO WIND - 40° FLAPS

APPROACH AT SEA LEVEL & S9°F AT 2500 FT, & S0°F AT 5000 FT, & 41°F AT 7500 FT, & 32°F IAS MANH ROLL TO CLEAR ROLL S0° OBS. S0° OBS. AT 5000 FT, & 41°F AT 7500 FT, & 32°F AT 500 FT, & 32°F AT 7500 FT

stances (both "ground roll" and "total to clear 50 ft.

OPTIONAL SYSTEMS

This section contains a description, operating procedures, and performance data (when applicable) for some of the optional equipment which may be installed in your Cessna. Owner's Manual Supplements are provided to cover operation of other optional equipment systems when installed in your airplane. Contact your Cessna Dealer for a complete list of available optional equipment.

COLD WEATHER EQUIPMENT

WINTERIZATION KIT.

For continuous operation in temperatures consistently below 20°F, the Cessna winterization kit, available from your Cessna Dealer, should be installed to improve engine operation. The kit consists of two baffles which attach to the engine air intakes in the cowling, a restrictive cover plate for the oil cooler air inlet in the right rear vertical engine baffle, and insulation for the crankcase breather line. Once installed, the crankcase breather insulation is approved for permanent use in both cold and hot weather.

GROUND SERVICE PLUG RECEPTACLE.

A ground service plug receptacle may be installed to permit use of an external power source for cold weather starting and during lengthy maintenance work on the airplane electrical system (with the exception of electronic equipment).

NOTE

Electrical power for the airplane electrical circuits is pro-

vided through a split bus bar having all electronic circuits on one side of the bus and other electrical circuits on the other side of the bus. When an external power source is connected, a contactor automatically opens the circuit to the electronic portion of the split bus bar as a protection against damage to the transistors in the electronic equipment by transient voltages from the power source. Therefore, the external power source can not be used as a source of power when checking electronic components.

Just before connecting an external power source (generator type or battery cart), the master switch should be turned on.

The ground service plug receptacle circuit incorporates a polarity reversal protection. Power from the external power source will flow only if the ground service plug is correctly connected to the airplane. If the plug is accidentally connected backwards, no power will flow to the airplane's electrical system, thereby preventing any damage to electrical equipment.

The battery and external power circuits have been designed to completely eliminate the need to "jumper" across the battery contactor to close it for charging a completely "dead" battery. A special fused circuit in the external power system supplies the needed "jumper" across the contacts so that with a "dead" battery and an external power source applied, turning on the master switch will close the battery contactor.

STATIC PRESSURE ALTERNATE SOURCE VALVE.

A static pressure alternate source valve may be installed in the static system for use when the external static source is malfunctioning.

If erroneous instrument readings are suspected due to water or ice in the static pressure lines, the static pressure alternate source valve control knob located below the wing flap switch should be opened, thereby supplying static pressure from the cabin. Cabin pressures will vary, however, with open cabin ventilators or windows. The most adverse combinations will result in airspeed and altimeter variations of no more than 2 MPH and 15 feet, respectively.

RADIO SELECTOR SWITCHES

RADIO SELECTOR SWITCH OPERATION.

Operation of the radio equipment is normal as covered in the respective radio manuals. When more than one radio is installed, an audio switching system is necessary. The operation of this switching system is described below.

TRANSMITTER SELECTOR SWITCH.

The transmitter selector switch, labeled TRANS, has two positions. When two transmitters are installed, it is necessary to switch the microphone to the radio unit the pilot desires to use for transmission. This is accomplished by placing the transmitter selector switch in the position corresponding to the radio unit which is to be used. The up position selects the upper transmitter and the down position selects the lower transmitter.

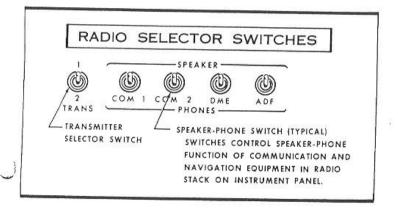


Figure 7-1.

The installation of Cessna radio equipment provides certain audio back-up capabilities and transmitter selector switch functions that the pilot should be familiar with. When the transmitter selector switch is placed in position 1 or 2, the audio amplifier of the corresponding transceiver is utilized to provide the speaker audio for all radios. If the audio amplifier in the selected transceiver fails, as evidenced by loss of speaker audio for all radios, place the transmitter selector switch in the other transceiver position. Since an audio amplifier is not utilized for headphones, a malfunctioning amplifier will not affect headphone operation.

SPEAKER PHONE SWITCHES.

The speaker-phone switches determine whether the output of the receiver in use is fed to the headphones or through the audio amplifier to the speaker. Place the switch for the desired receiving system either in the up position for speaker operation or in the down position for headphones.

MICROPHONE-HEADSET

A microphone-headset combination is offered as optional equipment. Using the microphone-headset and a microphone keying switch on the left side of the pilot's control wheel, the pilot can conduct radio communications without interrupting other control operations to handle a hand-held microphone. Also, passengers need not listen to all communications. The microphone and headset jacks are located near the lower left corner of the instrument panel.

TRUE AIRSPEED INDICATOR

A true airspeed indicator is available to replace the standard airspeed indicator in your airplane. The true airspeed indicator has a calibrated rotatable ring which works in conjunction with the airspeed indicator dial in a manner similar to the operation of a flight computer.

TO OBTAIN TRUE AIRSPEED, rotate ring until pressure altitude is aligned with outside air temperature in degrees Fahrenheit. Then read true airspeed on rotatable ring opposite airspeed needle.

NOTE

Pressure altitude should not be confused with indicated altitude. To obtain pressure altitude, set barometric scale on altimeter to "29,92" and read pressure altitude on altimeter. Be sure to return altimeter barometric scale to original barometric setting after pressure altitude has been obtained.

CARBURETOR AIR TEMPERATURE GAGE

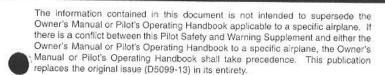
A carburetor air temperature gage may be installed in the aircraft to help detect carburetor icing conditions. The gage is marked with a yellow arc between -15° and +5°C. The yellow arc indicates the carburetor temperature range where carburetor icing can occur; a placard on the gage reads KEEP NEEDLE OUT OF YELLOW ARC DURING POSSIBLE ICING CONDITIONS.

Visible moisture or high humidity can cause carburetor ice formation, especially in idle or low power conditions. Under cruising conditions, the formation of ice is usually slow, providing time to detect the loss of RPM caused by the ice. Carburetor icing during take-off is rare since the full-open throttle condition is less susceptible to ice obstruction.

If the carburetor air temperature gage needle moves into the yellow arc during potential carburetor icing conditions, or there is an unexplained drop in RPM, apply full carburetor heat. Upon regaining the original RPM (with heat off), determine by trial and error the minimum amount of carburetor heat required for ice-free operation.

NOTE

Carburetor heat should not be applied during take-off unless absolutely necessary to obtain smooth engine acceleration (usually in sub-zero temperatures).


OIL QUICK-DRAIN VALVE

An oil quick-drain valve is optionally offered to replace the drain plug in the oil sump drain port. The valve provides a quicker and cleaner method of draining engine oil. To drain the oil with this valve installed, slip a hose over the end of the valve, route the hose to a suitable container, then push upward on the end of the valve until it snaps into the open position. Spring clips will hold the valve open. After draining, use a screwdriver or suitable tool to snap the valve into the extended (closed) position and remove the drain hose.

7-6

- Pilot Safety and Warning **Supplements**

COPYRIGHT © 1998 Cessna Aircraft Company Wichita, Kansas USA

Member of GAMA

D5139-13

Original Issue - 2 October 1985 Reissue - 1 June 1998

PILOT SAFETY AND WARNING SUPPLEMENTS

CONTENTS

NC

ng ce ife as r's

be

ts, lot ne ar ht ce s, ns or

CONTENTS

	INTRODUCTION
	FLIGHT CONSIDERATIONS
	Physiological 1 Checklists 2 Aircraft Loading 3 Single Engine Flight Information (Multi-engine Airplanes) 4 Pilot Proficiency 5
	Fuel Management
	SYSTEM OPERATIONAL CONSIDERATIONS
	Restraint Systems 9 Fuel System Contamination 10 Fuel Pump Operation 11 Auxiliary Fuel Tanks 12
	Instrument Power 13 Alternate Air System 14 Carbon Monoxide 15 Turbocharger 16 In-Flight Fires 17 In-Flight Opening of Doors 18
	MAINTENANCE CONSIDERATIONS
25.1000 **********************************	Maintenance 19 Seat and Restraint Systems 20 Exhaust and Fuel Systems 21 Retractable Landing Gear 22 Pressurized Airplanes 23
	Potential Hazards 24

INTRODUCTION

Pilots should know the information contained in the airplane's operating handbook, placards and checklists, and be familiar with service/maintenance publications, including service letters and bulletins, to ensure maximum safe utilization of the airplane. When the airplane was manufactured, it was equipped with a Pilot's Operating Handbook, Flight Manual, and/or Owner's Manual. If a handbook or manual is missing, a replacement should be obtained by contacting a Cessna Authorized Service Station.

In an effort to re-emphasize subjects that are generally known to most pilots, safety and operational information has been provided in the following Pilot Safety and Warning Supplements. As outlined in the table of contents, the Supplements are arranged numerically to make it easier to locate a particular Supplement. Supplement coverage is classified in three (3) categories: Flight Considerations, System Operational Considerations, and Maintenance Considerations. Most of the information relates to all Cessna airplanes, although a few Supplements are directed at operation of specific configurations such as multi-engine airplanes, pressurized airplanes, or airplanes certified for flight into known icing conditions.

Day-to-day safety practices play a key role in achieving maximum utilization of any piece of equipment.

WARNING

IT IS THE RESPONSIBILITY OF THE PILOT TO ENSURE THAT ALL ASPECTS OF PREFLIGHT PREPARATION ARE CONSIDERED BEFORE A FLIGHT IS INITIATED. ITEMS WHICH MUST BE CONSIDERED INCLUDE, BUT ARE NOT NECESSARILY LIMITED TO, THE FOLLOWING:

- PILOT PHYSICAL CONDITION AND PROFICIENCY
- AIRPLANE AIRWORTHINESS
- AIRPLANE EQUIPMENT APPROPRIATE FOR THE FLIGHT
- AIRPLANE LOADING AND WEIGHT AND BALANCE
- ROUTE OF THE FLIGHT
- WEATHER DURING THE FLIGHT
- FUEL QUANTITY REQUIRED FOR THE FLIGHT, INCLUDING ADEQUATE RESERVES
- AIR TRAFFIC CONTROL AND ENROUTE NAVIGATION FACILITIES
- FACILITIES AT AIRPORTS OF INTENDED USE

(Continued Next Page)

the transfer of the second of the second

WARNING (Continued)

- ADEQUACY OF AIRPORT (RUNWAY LENGTH, SLOPE, CONDITION, ETC.)
- LOCAL NOTICES, AND PUBLISHED NOTAMS

FAILURE TO CONSIDER THESE ITEMS COULD RESULT IN AN ACCIDENT CAUSING EXTENSIVE PROPERTY DAMAGE AND SERIOUS OR EVEN FATAL INJURIES TO THE PILOT, PASSENGERS, AND OTHER PEOPLE ON THE GROUND.

The following Pilot Safety and Warning Supplements discuss in detail many of the subjects which must be considered by a pilot before embarking on any flight. Knowledge of this information is considered essential for safe, efficient operation of an airplane.

Proper flight safety begins long before the takeoff. A pilot's attitude toward safety and safe operation determines the thoroughness of the preflight preparation, including the assessment of the weather and airplane conditions and limitations. The pilot's physical and mental condition and proficiency are also major contributing factors. The use of current navigation charts, the Aeronautical Information Manual, NOTAMs, airport data, weather information, Advisory Circulars and training information, etc., is important. Individuals often develop their own personal methods for performing certain flight operations; however, it is required that these do not conflict with the limitations or recommended operating procedures for a specific airplane.

The pilot should know the Emergency Procedures for the airplane, since there may not be time to review the checklist in an emergency situation. It is essential that the pilot review the entire operating handbook to retain familiarity. He or she should maintain a working knowledge of the limitations of his or her airplane. When the pilot deliberately or inadvertently operates the airplane outside the limitations, he or she is violating Federal Aviation Regulations and may be subject to disciplinary actions.

Cessna does not support modifications to Cessna airplanes, whether by Supplemental Type Certificate or otherwise, unless these certificates are approved by Cessna. Such modifications, although approved by the FAA, may void any and all Cessna warranties on the airplane since Cessna may not know the full effects on the overall airplane. Cessna does not and has not tested and approved all such modifications by other companies. Maintenance and operating procedures and performance data provided by Cessna may no longer be accurate for the modified airplane.

Airplanes require maintenance on a regular basis. As a result, it is essential that the airplane be regularly inspected and repaired when parts are worn or damaged in order to maintain flight safety. Information for the proper maintenance of the airplane is found in the airplane Service/Maintenance Manual, Illustrated Parts Catalog, and in company-issued Service Information

Letters or Service Bulletins, etc. Pilots should assure themselves that all recommendations for product changes or modifications called for by Service Bulletins, etc., are accomplished and that the airplane receives repetitive and required inspections.

PILOT SAFETY AND

WARNING SUPPLEMENTS

Much of the subject matter discussed in the following Supplements has been derived from various publications of the U.S. Government. Since these documents contain considerably more information and detail than is contained here, it is highly recommended that the pilot also read them in order to gain an even greater understanding of the subjects related to flight safety. These publications include the following:

AERONAUTICAL INFORMATION MANUAL (AIM). This Federal Aviation Administration (FAA) manual is designed to provide airmen with basic flight information and Air Traffic Control (ATC) procedures for use in the National Airspace System (NAS). It also contains items of interest to pilots concerning health and medical facts, factors affecting flight safety, a pilot/controller glossary of terms used in the Air Traffic Control System, and information on safety, accident and hazard reporting. This manual can be purchased at retail dealers, or on a subscription basis from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

NOTICES TO AIRMEN (Class II). This is a publication containing current Notices to Airmen (NOTAMS) which are considered essential to the safety of flight as well as supplemental data affecting the other operational publications listed here. It also includes current Flight Data Center (FDC) NOTAMS, which are regulatory in nature, issued to establish restrictions to flight or amend charts or published Instrument Approach Procedures. This publication is issued every 14 days and is available by subscription from the Superintendent of Documents.

AIRPORT FACILITY DIRECTORY, ALASKA and PACIFIC CHART SUPPLEMENTS. These publications contain information on airports, communications, navigation aids, instrument landing systems, VOR receiver checks, preferred routes, FSS/Weather Service telephone numbers, Air Route Traffic Control Center (ARTCC) frequencies, and various other pertinent special notices essential to air navigation. These publications are available by subscription from the National Ocean Service (NOS), NOAA N/ACC3 Distribution Division, Riverdale, Maryland 20737, telephone 1-800-638-8972 FAX (301) 436-6829.

FEDERAL AVIATION REGULATIONS (FARs). The FAA publishes the FARs to make readily available to the aviation community the regulatory requirements placed upon them. These regulations are sold as individual parts by the Superintendent of Documents. The more frequently amended parts are sold by subscription service with subscribers receiving changes automatically as they are issued. Less active parts are sold on a single-sale basis. Changes to single-sale parts will be sold separately as issued. Information concerning

INTRODUCTION

PILOT SAFETY AND WARNING SUPPLEMENTS

these changes will be furnished by the FAA through its Status of Federal Aviation Regulations, AC 00-44II.

ADVISORY CIRCULARS (ACs). The FAA issues ACs to inform the aviation public of nonregulatory material of interest. Advisory Circulars are issued in a numbered subject system corresponding to the subject areas of the Federal Aviation Regulations. AC 00-2.11, Advisory Circular Checklist contains a listing of ACs covering a wide range of subjects and how to order them, many of which are distributed free-of-charge.

AC 00-2.11 is issued every four months and is available at no cost from: U.S. Department of Transportation, Distribution requirements Section, SVC 121.21, Washington, DC 20590. The checklist is also available via the internet at http://www.faa.gov/abc/ac-chklist/actoc.htm.

PILOT SAFETY AND WARNING SUPPLEMENTS

PHYSIOLOGICAL

PHYSIOLOGICAL

FATIGUE

Fatigue continues to be one of the most treacherous hazards to flight safety. It generally slows reaction times and causes errors due to inattention, and it may not be apparent to a pilot until serious errors are made. Fatigue is best described as either acute (short-term) or chronic (long-term). As a normal occurrence of everyday living, acute fatigue is the tiredness felt after long periods of physical and/or mental strain, including strenuous muscular effort, immobility, heavy mental workload, strong emotional pressure, monotony, and lack of sleep. In addition to these common causes, the pressures of business, financial worries, and unique family problems can be important contributing factors. Consequently, coordination and alertness, which are vital to safe pilot performance, can be reduced. Acute fatigue can be prevented by adequate rest and sleep, as well as regular exercise and proper nutrition.

Chronic fatigue occurs when there is insufficient time for full recovery between periods of acute fatigue. Performance continues to degrade and judgment becomes impaired so that unwarranted risks may be taken. Recovery from chronic fatigue requires a prolonged period of rest. If a pilot is markedly fatigued prior to a given flight, he or she should not fly. To prevent cumulative fatigue effects during long flights, pilots should conscientiously make efforts to remain mentally active by making frequent visual and radio navigation position checks, estimates of time of arrival at the next check point, etc.

STRESS

Stress from the pressures of everyday living can impair pilot performance, often in very subtle ways. Difficulties can occupy thought processes enough to markedly decrease alertness. Distractions can also interfere with judgment to the point that unwarranted risks are taken, such as flying into deteriorating weather conditions to keep on schedule. Stress and fatigue can be an extremely hazardous combination.

It is virtually impossible to leave stress on the ground. Therefore, when more than usual difficulties are being experienced, a pilot should consider delaying flight until these difficulties are satisfactorily resolved.

EMOTION

Certain emotionally upsetting events, including a serious argument, death of a family member, separation or divorce, loss of job, or financial catastrophe can seriously impair a pilot's ability to fly an airplane safely. The emotions of anger, depression, and anxiety from such events not only decrease alertness

1 PHYSIOLOGICAL

PILOT SAFETY AND WARNING SUPPLEMENTS

but may also lead to taking unnecessary risks. Any pilot who experiences an emotionally upsetting event should not fly until satisfactorily recovered from the event.

ILLNESS

A pilot should not fly with a known medical condition or a change of a known medical condition that would make the pilot unable to meet medical certificate standards. Even a minor illness suffered in day-to-day living can seriously degrade performance of many piloting skills vital to safe flight. An illness may produce a fever and other distracting symptoms that can impair judgment, nemory, alertness, and the ability to make decisions. Even if the symptoms of an illness are under adequate control with a medication, the medication may adversely affect pilot performance, and invalidate his or her medical certificate.

The safest approach is not to fly while suffering from any illness. If there is doubt about a particular illness, the pilot should contact an Aviation Medical Examiner for advice.

WEDICATION

illot performance can be seriously degraded by both prescribed and over-thecounter medications. Many medications, such as tranquilizers, sedatives, itrong pain relievers, and cough suppressant preparations, have primary effects that may impair judgment, memory, alertness, coordination, vision, and ibility to make decisions. Other medications, such as antihistamines, blood ressure drugs, muscle relaxants, and agents to control diarrhea and motion ickness, have side effects that may impair the body's critical functions. Any nedications that depress the nervous system, such as a sedative, tranquilizer or antihistamine, can make a pilot more susceptible to hypoxia.

ARs prohibit pilots from flying while using any medication that affects their aculties in any way contrary to safety. The safest advice is to not fly while aking medications, unless approved to do so by an Aviation Medical Examiner. The condition for which the drug is required may itself be very azardous to flying, even when the symptoms are suppressed by the drug. A ombination of medications may cause adverse effects that do not result from I single medication.

ALCOHOL

20 not fly while under the influence of alcohol. Flying and alcohol are definitely lethal combination. FARs prohibit pilots from flying within 8 hours after consuming any alcoholic beverage or while under the influence of alcohol. A

PILOT SAFETY AND WARNING SUPPLEMENTS

PHYSIOLOGICAL

pilot may still be under the influence 8 hours after drinking a moderate amount of alcohol. Therefore, an excellent practice is to allow at least 24 hours between "bottle and throttle," depending on the amount of alcoholic beverage consumed.

Extensive research has provided a number of facts about the hazards of alcohol consumption and flying. As little as one ounce of liquor, one bottle of beer, or four ounces of wine can impair flying skills, with the alcohol consumed in these drinks being detectable in the breath and blood for at least three hours. Alcohol also renders a pilot much more susceptible to disorientation and hypoxia. In addition, the after effects of alcohol increase the level of fatigue significantly.

There is simply no way of alleviating a hangover. Remember that the human body metabolizes alcohol at a fixed rate, and no amount of coffee or medications will alter this rate. Do not fly with a hangover, or a "masked hangover" (symptoms suppressed by aspirin or other medication). A pilot can be severely impaired for many hours by hangover.

DRINKING THE RIGHT FLUIDS

One of the main sources of pilot and passenger complaints stems from the relatively lowered humidity during air travel encountered at altitude particularly on extended flights. Even though an individual may not be physically active, body water is continuously expired from the lungs and through the skin. This physiological phenomenon is called insensible perspiration or insensible loss of water.

The loss of water through the skin, lungs, and kidneys never ceases. Water loss is increased with exercise, fever, and in some disease conditions such as hyperthyroidism. Combatting the effects of insensible water loss during flight requires frequent water intake. Unless this is done, dehydration will occur and this causes interference with blood circulation, tissue metabolism, and excretion of the kidneys. Water is vital for the normal chemical reaction of human tissue. It is also necessary for the regulation of body temperature and as an excretory medium.

Beginning a flight in a rested, healthy condition is of prime importance. Proper water balance through frequent fluid intake relieves the adverse effects produced by insensible water loss in an atmosphere of lowered humidity. Typical dehydration conditions are: dryness of the tissues and resulting irritation of the eyes, nose, and throat as well as other conditions previously mentioned plus the associated fatigue relating to the state of acidosis (reduced alkalinity of the blood and the body tissues). A person reporting for a flight in a dehydrated state will more readily notice these symptoms until fluids are adequately replaced.

1 PHYSIOLOGICAL

PILOT SAFETY AND WARNING SUPPLEMENTS

Consumption of coffee, tea, cola, and cocoa should be minimized since these drinks contain caffeine. In addition, tea contains a related drug, theophylline, while cocoa (and chocolate) contain theobromine, of the same drug group. These drugs, besides having a diuretic effect, have a marked stimulating effect and can cause an increase in pulse rate, elevation of blood pressure, stimulation of digestive fluid formation, and irritability of the gastrointestinal tract.

HYPOXIA

Hypoxia, in simple terms, is a lack of sufficient oxygen to keep the brain and other body tissues functioning properly. Wide individual variation occurs with espect to susceptibility to and symptoms of hypoxia. In addition to progressively insufficient oxygen at higher altitudes, anything interfering with he blood's ability to carry oxygen can contribute to hypoxia (e.g., anemias, carbon monoxide, and certain drugs). Also, alcohol and various other drugs decrease the brain's tolerance to hypoxia. A human body has no built-in alarm system to let the pilot know when he is not getting enough oxygen. It is lifficult to predict when or where hypoxia will occur during a given flight, or now it will manifest itself.

Although a deterioration in night vision occurs at a cabin pressure altitude as ow as 5000 feet, other significant effects of altitude hypoxia usually do not occur in a normal healthy pilot below 12,000 feet. From 12,000 to 15,000 feet of altitude, judgment, memory, alertness, coordination, and ability to make lecisions are impaired, and headache, drowsiness, dizziness, and either a iense of well-being (euphoria) or belligerence occurs. The effects appear ollowing increasingly shorter periods of exposure to increasing altitude. In act, a pilot's performance can seriously deteriorate within 15 minutes at 5,000 feet. At cabin pressures above 15,000 feet, the periphery of the visual eld grays out to a point where only central vision remains (tunnel vision). A lue coloration (cyanosis) of the fingernails and lips develops and the ability to ake corrective and protective action is lost in 20 to 30 minutes at 18,000 feet and 5 to 12 minutes at 20,000 feet, followed soon thereafter by inconsciousness.

he altitude at which significant effects of hypoxia occur can be lowered by a umber of factors. Carbon monoxide inhaled in smoking or from exhaust imes, lowered hemoglobin (anemia), and certain medications can reduce the xygen-carrying capacity of the blood to the degree that the amount of oxygen rovided to body tissues will already be equivalent to the oxygen provided to to tissues when exposed to a cabin pressure altitude of several thousand set. Small amounts of alcohol and low doses of certain drugs, such as ntihistamines, tranquilizers, sedatives, and analgesics can, through their epressant action, render the brain much more susceptible to hypoxia. xtreme heat and cold, fever, and anxiety increase the body's demand for xygen, and hence, its susceptibility to hypoxia.

PILOT SAFETY AND WARNING SUPPLEMENTS

PHYSIOLOGICAL

Current regulations require that pilots use supplemental oxygen after 30 minutes of exposure to cabin pressure altitudes between 12,500 and 14,000 feet and immediately upon exposure to cabin pressure altitudes above 14,000 feet. Every occupant of the airplane must be provided with supplemental oxygen at cabin pressure altitudes above 15,000 feet.

Hypoxia can be prevented by avoiding factors that reduce tolerance to altitude, by enrichening the air with oxygen from an appropriate oxygen system, and by maintaining a comfortable, safe cabin pressure altitude. For optimum protection, pilots are encouraged to use supplemental oxygen above 10,000 feet during the day, and above 5000 feet at night.

NOTE

When using oxygen systems that do not supply "pressure breathing", 100% oxygen cannot maintain proper blood oxygen level above 25,000 feet altitude. Pilot's must be familiar with limitations of the airplane oxygen system.

Pilots are encouraged to attend physiological training and susceptibility testing in a high-altitude chamber to experience and make note of their own personal reactions to the effects of hypoxia. These chambers are located at the FAA Civil Aeromedical Institute and many governmental and military facilities. Knowing before hand what your own early symptoms of hypoxia are will allow a greater time margin for taking corrective action. The corrective action, should symptoms be noticed, is to use supplemental oxygen and/or decrease cabin altitude. These actions must not be delayed.

SMOKING

Smokers are slightly resistant to the initial symptoms of hypoxia. Because of this, smokers risk the possibility of delayed detection of hypoxia. Pilots should avoid any detrimental factors, such as second hand smoke, which can cause such insensitivity. The small merit of hypoxic tolerance in smokers will do more harm than good by rendering them insensitive and unaware of the hypoxic symptoms.

Smoking in the cabin of the airplane exposes other passengers to high concentrations of noxious gas and residue. Furthermore, many of the systems of the airplane are contaminated and deteriorated by long-term exposure to smoking residue. Due to the large number of known dangers and hazards, as well as those which are still the subject of research, it is strongly recommended that smoking not take place in flight.

WARNING

SMOKING WHILE OXYGEN SYSTEMS ARE IN USE CREATES AN EXTREME FIRE HAZARD.

YPERVENTILATION

yperventilation, or an abnormal increase in the volume of air breathed in and it of the lungs, can occur subconsciously when a stressful situation is socuntered in flight. As hyperventilation expels excessive carbon dioxide om the body, a pilot can experience symptoms of light headedness, iffocation, drowsiness, tingling in the extremities, and coolness -- and react to em with even greater hyperventilation. Incapacitation can eventually result. neoordination, disorientation, painful muscle spasms, and finally, reonsciousness may ultimately occur.

ne symptoms of hyperventilation will subside within a few minutes if the rate id depth of breathing are consciously brought back under control. The storation of normal carbon dioxide levels in the body can be hastened by introlled breathing in and out of a paper bag held over the nose and mouth.

trly symptoms of hyperventilation and hypoxia are similar. Moreover, perventilation and hypoxia can occur at the same time. Therefore, if a pilot using oxygen when symptoms are experienced, the oxygen system should be checked to assure that it has been functioning effectively before giving tention to rate and depth of breathing.

AR BLOCK

an airplane climbs and the cabin pressure decreases, trapped air in the iddle ear expands and escapes through the eustachian tube to the nasal issages, thus equalizing with the pressure in the cabin. During descent, ibin pressure increases and some air must return to the middle ear through e eustachian tube to maintain equal pressure. However, this process does it always occur without effort. In most cases it can be accomplished by vallowing, yawning, tensing the muscles in the throat or, if these do not work, the combination of closing the mouth, pinching the nose closed, and tempting to blow gently through the nostrils (Valsalva maneuver).

ther an upper respiratory infection, such as a cold or sore throat, or a nasal ergic condition can produce enough congestion around the eustachian tube make equalization difficult. Consequently, the difference in pressure tween the middle ear and the airplane cabin can build up to a level that will lid the eustachian tube closed, making equalization difficult, if not impossible, is situation is commonly referred to as an "ear block." An ear block duces severe pain and loss of hearing that can last from several hours to veral days. Rupture of the ear drum can occur in flight or after landing, and can accumulate in the middle ear and become infected. If an ear block experienced and does not clear shortly after landing, a physician should be insulted. Decongestant sprays or drops to reduce congestion usually do not ovide adequate protection around the eustachian tubes. Oral decongestants we side effects that can significantly impair pilot performance. An ear block in be prevented by not flying with an upper respiratory infection or nasal ergic condition.

SINUS BLOCK

During climb and descent, air pressure in the sinuses equalizes with the airplane cabin pressure through small openings that connect the sinuses to the nasal passages. Either an upper respiratory infection, such as a cold or sinusitis, or a nasal allergic condition can produce enough congestion around the openings to slow equalization, and as the difference in pressure between the sinus and cabin increases, eventually the openings plug. This "sinus block" occurs most frequently during descent.

A sinus block can occur in the frontal sinuses, located above each eyebrow, or in the maxillary sinuses, located in each upper cheek. It will usually produce excruciating pain over the sinus area. A maxillary sinus block can also make the upper teeth ache. Bloody mucus may discharge from nasal passages. A sinus block can be prevented by not flying with an upper respiratory infection or nasal allergic condition. If a sinus block does occur and does not clear shortly after landing, a physician should be consulted.

VISION IN FLIGHT

Of all the pilot's senses, vision is the most critical to safe flight. The level of illumination is the major factor to adequate in-flight vision. Details on flight instruments or aeronautical charts become difficult to discern under dimly lit conditions. Likewise, the detection of other aircraft is much more difficult under such conditions.

In darkness, vision becomes more sensitive to light, a process called dark adaptation. Although exposure to total darkness for at least 30 minutes is required for complete dark adaptation, a pilot can achieve a moderate degree of dark adaptation within 20 minutes under dim red lighting. Since red light severely distorts colors, especially on aeronautical charts, and can cause serious difficulty in focusing the eyes on objects inside the cabin, its use is advisable only where optimum outside night vision is necessary. Even so, white flight station lighting must be available when needed for map and instrument reading, especially while under IFR conditions. Dark adaptation is impaired by exposure to cabin pressure altitudes above 5000 feet, carbon monoxide inhaled in smoking and from exhaust fumes, deficiency of vitamin A in the diet, and by prolonged exposure to bright sunlight. Since any degree of dark adaptation is lost within a few seconds of viewing a bright light, pilots should close one eye when using a light to preserve some degree of night vision. In addition, use of sunglasses during the day will help speed the process of dark adaptation during night flight.

SCUBA DIVING

A pilot or passenger who flies shortly after prolonged scuba diving could be in serious danger. Anyone who intends to fly after scuba diving should allow the body sufficient time to rid itself of excess nitrogen absorbed during diving. If not, decompression sickness (commonly referred to as the "bends"), due to dissolved gas, can occur even at low altitude and create a serious in-flight emergency. The recommended waiting time before flight to cabin altitudes of 8000 feet or less is at least 12 hours after diving which has not required controlled ascent (non-decompression diving), and at least 24 hours after diving which has required a controlled ascent (decompression diving). The waiting time before flight to cabin pressure altitudes above 8000 feet should be at least 24 hours after any scuba diving.

AEROBATIC FLIGHT

Pilots planning to engage in aerobatic maneuvers should be aware of the physiological stresses associated with accelerative forces during such naneuvers. Forces experienced with a rapid push-over maneuver will result in he blood and body organs being displaced toward the head. Depending on he forces involved and the individual tolerance, the pilot may experience liscomfort, headache, "red-out", and even unconsciousness. Forces experienced with a rapid pull-up maneuver result in the blood and body organs eing displaced toward the lower part of the body away from the head. Since he brain requires continuous blood circulation for an adequate oxygen supply, here is a physiological limit to the time the pilot can tolerate higher forces force losing consciousness. As the blood circulation to the brain decreases a result of the forces involved, the pilot will experience "narrowing" of visual alds, "gray-out", "black-out", and unconsciousness.

hysiologically, humans progressively adapt to imposed strains and stresses, and with practice, any maneuver will have a decreasing effect. Tolerance to 3" forces is dependent on human physiology and the individual pilot. These ctors include the skeletal anatomy, the cardiovascular architecture, the arrous system, blood make-up, the general physical state, and experience and recency of exposure. A pilot should consult an Aviation Medical Examiner for to aerobatic training and be aware that poor physical condition can duce tolerance to accelerative forces.

PILOT SAFETY AND WARNING SUPPLEMENTS

2 CHECKLISTS

CHECKLISTS

CONSISTENT USE

Airplane checklists are available for those persons who do not wish to use the operating handbook on every flight. These checklists contain excerpts from the operating handbook written for that particular airplane and are designed to remind pilots of the minimum items to check for safe operation of the airplane, without providing details concerning the operation of any particular system. Checklists should be used by the pilot and not placed in the seat pocket and forgotten. Even pilots who consistently carry the checklists tend to memorize certain areas and intentionally overlook these procedural references. Consequently, in time, these individuals find that operating something as complex as an airplane on memory alone is practically impossible, and eventually, could find themselves in trouble because one or more important items are overlooked or completely forgotten. The consistent use of all checklists is required for the safe operation of an airplane.

NOTE

Abbreviated checklists can be used in place of the airplane operating manual. However, they should be used only after the pilot becomes familiar with the airplane operating manual, and thoroughly understands the required procedures for airplane operation.

CONTRIBUTIONS TO SAFETY

Most large airplanes in the transport category are flown by consistent use of all checklists. Experience has shown that pilots who consistently use checklists on every flight maintain higher overall proficiency, and have better safety records. The pilot should not become preoccupied inside the cockpit (such as with a checklist) and fail to remain alert for situations outside the airplane.

CHECKLIST ARRANGEMENT (ORGANIZATION OF ITEMS)

Abbreiviated checklists are written in a concise form to provide pilots with a means of complying with established requirements for the safe operation of their airplane. The checklists are usually arranged by "Item" and "Condition" headings. The item to be checked is listed with the desired condition stated. Key words or switch and lever positions are usually emphasized by capitalization in the "Condition" column. The checklist may also contain supplemental information pertinent to the operation of the airplane, such as performance data, optional equipment operation, etc., that the pilot might routinely use.

EMERGENCY CHECKLISTS

Emergency checklists are provided for emergency situations peculiar to a particular airplane design, operating or handling characteristic. Pilots should periodically review the airplane operating handbook to be completely familiar with information published by the manufacturer concerning the airplane. Emergency situations are never planned and may occur at the worst possible time. During most emergency conditions, there will not be sufficient time to refer to an emergency checklist; therefore, it is essential that the pilot commit o memory those emergency procedures that may be shown in bold-face type or outlined with a black border, within the emergency procedures section in operating handbooks or equivalent hand-held checklists. These items are assential for continued safe flight. After the emergency situation is under control, the pilot should complete the checklist in its entirety, in the proper sequence, and confirm that all items have been accomplished. It is essential hat the pilot review and know published emergency checklists and any other imergency procedures. Familiarity with the airplane and its systems and a ligh degree of pilot proficiency are valuable assets if an emergency should

AIRPLANE LOADING

AIRPLANE CENTER-OF-GRAVITY RANGE

Pilots should never become complacent about the weight and balance limitations of an airplane, and the reasons for these limitations. Since weight and balance are vital to safe airplane operation, every pilot should have a thorough understanding of airplane loading, with its limitations, and the principles of airplane balance. Airplane balance is maintained by controlling the position of the center-of-gravity. Overloading, or misloading, may not result in obvious structural damage, but could do harm to hidden structure or produce a dangerous situation in the event of an emergency under those conditions. Overloading, or misloading may also produce hazardous airplane handling characteristics.

There are several different weights to be considered when dealing with airplane weight and balance. These are defined in another paragraph in this supplement. Airplanes are designed with predetermined structural limitations to meet certain performance and flight characteristics and standards. Their balance is determined by the relationship of the center-of-gravity (C.G.) to the center of lift. Normally, the C.G. of an airplane is located slightly forward of the center of lift. The pilot can safely use the airplane flight controls to maintain stabilized balance of the airplane as long as the C.G. is located within specified forward and aft limits. The allowable variation of the C.G. location is called the center-of-gravity range. The exact location of the allowable C.G. range is specified in the operating handbook for that particular airplane.

LOCATING THE LOAD

It is the responsibility of the pilot to ensure that the airplane is loaded properly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

To determine the center-of-gravity (C.G.) of an airplane, a pilot must have an understanding of the three terms used in weight and balance calculations. These terms are weight, moment, and arm. The principles associated with these terms are applied to each occupant, piece of cargo or baggage, the airplane itself, and to all fuel to determine the overall C.G. of the airplane.

The weight of an object should be carefully determined or calculated. All weights must be measured in the same units as the aircraft empty weight. The arm is the distance that the weight of a particular item is located from the reference datum line or the imaginary vertical line from which all horizontal distances are measured for balance purposes (refer to examples in Figure 1).

3 AIRPLANE LOADING

PILOT SAFETY AND WARNING SUPPLEMENTS

The word "moment," as used in airplane loading procedures, is the product of he weight of the object multiplied by the arm.

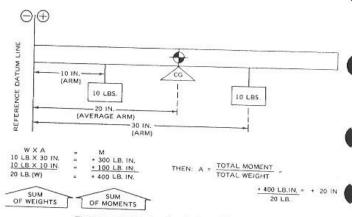


Figure 1. Computing the Center-of-Gravity

ilots can remember and use the relationship of these terms most easily by ranging them in a mathematical triangle:

weight × arm = moment moment + weight = arm moment + arm = weight

ne relative position of any two terms indicates the mathematical process nultiplication or division) required to compute the third term.

loading graph or loading tables, a center-of-gravity limits chart and/or a inter-of-gravity moment envelope chart, as well as a sample loading problem a provided in most airplane operating handbooks. By following the narrative rections, the pilot can determine the correct airplane C.G. for any infiguration of the airplane. If the position of the load is different from that own on the loading graph or in the loading tables, additional moment

PILOT SAFETY AND WARNING SUPPLEMENTS

AIRPLANE LOADING

calculations, based on the actual weight and C.G. arm (fuselage station) of the item being loaded, must be performed.

LOAD SECURITY

In addition to the security of passengers, it is the pilot's responsibility to determine that all cargo and/or baggage is secured before flight. When required, the airplane may be equipped with tie-down rings or fittings for the purpose of securing cargo or baggage in the baggage compartment or cabin area. The maximum allowable cargo loads to be carried are determined by cargo weight limitations, the type and number of tie-downs used, as well as by the airplane weight and C.G. limitations. Always carefully observe all precautions listed in the operating handbook concerning cargo tiedown.

Pilots should assist in ensuring seat security and proper restraint for all passengers. Pilots should also advise passengers not to put heavy or sharp items under occupied seats since these items may interfere with the seats' energy absorption characteristics in the event of a crash.

Optional equipment installed in the airplane can affect loading, and the airplane center-of-gravity. Under certain loading conditions in tricycle gear airplanes, it is possible to exceed the aft C.G. limit, which could cause the airplane to tip and allow the fuselage tailcone to strike the ground while loading the airplane. The force of a tail ground strike could damage internal structure, resulting in possible interference with elevator control system operation.

EFFECTS OF LOADING ON THE FLIGHT

Weight and balance limits are placed on airplanes for three principal reasons: first, the effect of the weight on the primary and secondary structures; second, the effect on airplane performance; and third, the effect on flight control/ability, particularly in stall and spin recovery.

A knowledge of load factors in flight maneuvers and gusts is important for understanding how an increase in maximum weight affects the characteristics of an airplane. The structure of an airplane subjected to a load factor of 3 Gs, must be capable of withstanding an added load of three hundred pounds for each hundred pound increase in weight. All Cessna airplanes are analyzed and tested for flight at the maximum authorized weight, and within the speeds posted for the type of flight to be performed. Flight at weights in excess of this amount may be possible, but loads for which the airplane was not designed may be imposed on all or some part of the structure.

An airplane loaded to the rear limit of its permissible center-of-gravity range will respond differently than when it is loaded near the forward limit. The stall

AIRPLANE LOADING

PILOT SAFETY AND WARNING SUPPLEMENTS

characteristics of an airplane change as the airplane load changes, and stall :haracteristics become progressively better as center-of-gravity moves orward. Distribution of weight can also have a significant effect on spin characteristics. Forward location of the C.G. will usually make it more difficult o obtain a spin. Conversely, extremely aft C.G. locations will tend to promote angthened recoveries since a more complete stail can be achieved. Changes n airplane weight as well as its distribution can have an effect on spin haracteristics since increases in weight will increase inertia. Higher weights nay delay recoveries.

in airplane loaded beyond the forward C.G. limit will be nose heavy, and can e difficult to rotate for takeoff or flare for landing. Airplanes with tail wheels an be nosed over more easily.

OAD AND LATERAL TRIM

ome airplanes have a maximum limit for wing fuel lateral imbalance and/or a naximum wing locker load limitation. These limitations are required for one or oth of two primary reasons. The first is to ensure that the airplane will naintain certain roll responses mandated by its certification. The other is to revent overheating and interruption of lateral trim on certain types of utopilots caused by the excessive work required to maintain a wings level titude while one wing is heavier than the other. Pilots should carefully bserve such limitations and keep the fuel balance within the limits set forth in ie respective operating handbook.

VEIGHT AND BALANCE TERMINOLOGY

ne following list is provided in order to familiarize pilots and owners with the rminology used in calculating the weight and balance of Cessna airplanes. some terminology listed herein is defined and used in Pilot's Operating andbooks only.)

rm	The horizontal distant	e from
----	------------------------	--------

the reference datum to

the center-of-gravity (C.G.) of an item.

asic Empty Weight The standard empty weight plus the weight of

installed optional equipment.

PILOT SAFETY AND WARNING SUPPLEMENTS

MAC

AIRPLANE LOADING

C.G. Arm	The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.
C.G. Limits	The extreme center-of-gravity locations within whice the airplane must be operated at a given weight.

Center-of-Gravity The point at which an airplane or item of equipment (C.G.) would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the airplane or item of

equipment. The mean aerodynamic chord of a wing is the chord of an imaginary airfoil which throughout the flight range will have the same force vectors as those of the wing.

Maximum Landing The maximum weight approved for the landing Weight touchdown.

Maximum Ramp The maximum weight approved for ground Weight maneuvers. It includes the weight of start, taxi and runup fuel.

Maximum Takeoff The maximum weight approved for the start of the Weight takeoff roll.

Maximum Zero Fuel The maximum weight exclusive of usable fuel. Weight

Moment The product of the weight of an item multiplied by its arm. (Moment divided by a constant is used to simplify balance calculations by reducing the number

of digits.)

The weight of occupants, cargo, and baggage. Payload

Reference Datum An imaginary vertical plane from which all horizontal distances are measured for balance purposes.

Standard Empty The weight of a standard airplane, including unusable Weight. fuel, full operating fluids and full engine oil. In those manuals which refer to this weight as Licensed Empty

Weight, the weight of engine oil is not included and must be added separately in weight and balance

calculations.)

A location along the airplane fuselage given in terms of the distance from the reference datum.

Station

AIRPLANE LOADING

Tare

Unusable Fuel

PILOT SAFETY AND WARNING SUPPLEMENTS

The weight of chocks, blocks, stands, etc., used when weighing an airplane, and is included in the scale readings. Tare is deducted from the scale reading to

obtain the actual (net) airplane weight.

The quantity of fuel that cannot be safely used in

flight.

Usable Fuel The fuel available for flight planning.

Useful Load The difference between ramp weight and the basic

empty weight.

PILOT SAFETY AND WARNING SUPPLEMENTS

SINGLE ENGINE FLIGHT (MULTI-ENGINE AIRPLANES)

SINGLE ENGINE FLIGHT INFORMATION (MULTI-ENGINE AIRPLANES)

INTRODUCTION

The following discussion is intended primarily for pilots of propeller-driven, light twin-engine airplanes, powered by reciprocating engines and certified under CAR Part 3 or FAR Part 23. This discussion is not intended to apply to specific models, but is intended, instead, to give general guidelines or recommendations for operations in the event of an engine failure during flight.

SINGLE ENGINE TAKEOFF AND CLIMB

Each time a pilot considers a takeoff in a twin-engine airplane, knowledge is required of the Minimum Control Speed (VMC) for that particular airplane. Knowledge of this speed, is essential to ensure safe operation of the airplane in the event an engine power loss occurs during the most critical phases of flight, the takeoff and initial climb.

V_{MC} is the minimum flight speed at which the airplane is directionally and laterally controllable as determined in accordance with Federal Aviation Regulations. Airplane certification conditions include: one engine becoming inoperative and windmilling; not more than a 5-degree bank toward the operative engine; takeoff power on the operative engine; landing gear retracted; flaps in the takeoff position; and the most critical C.G. (center of gravity). A multi-engine airplane must reach the minimum control speed before full control deflections can counteract the adverse rolling and/or yawing tendencies associated with one engine inoperative and full power operation on the other engine. The most critical time for an engine failure is during a two or three second period, late in the takeoff, while the airplane is accelerating to a safe speed.

Should an engine failure be experienced before liftoff speed is reached, the takeoff must be aborted. If an engine failure occurs immediately after liftoff, but before the landing gear is retracted, continue takeoff while retracting gear. Abort takeoff only if sufficient runway is available. This decision should be made before the takeoff is initiated.

The pilot of a twin-engine airplane must exercise good judgment and take prompt action in the decision whether or not to abort a takeoff attempt following an engine failure, since many factors will influence the decision. PILOT SAFETY AND WARNING SUPPLEMENTS

mixture control may alleviate the condition. It must be emphasized that these procedures are not designed to replace the procedural steps listed in the emergency procedures section of the airplane operating handbook, but are presented as a guide to be used by the pilot if, in his or her judgment, corrective action should be attempted prior to shutting down a failing or malfunctioning engine. Altitude, terrain, weather conditions, weight, and accessibility of suitable landing areas must all be considered before attempting to determine and/or correct the cause of an engine failure. In any event, if an engine fails in cruise and cannot be restarted, a landing at the nearest suitable airport is recommended.

SINGLE ENGINE APPROACH AND LANDING OR GO-AROUND

An approach and landing with one engine inoperative on a multi-engine airplane can easily be completed by a proficient, properly trained pilot. However, the pilot must plan and prepare the airplane much earlier than normal to ensure success. While preparing, fuel should be scheduled so that an adequate amount is available for use by the operative engine. All crossfeeding should be completed during level flight above a minimum altitude of 1000 feet AGL.

During final approach, the pilot should maintain the single engine best rate-ofclimb speed or higher, until the landing is assured. An attempt should be made to keep the approach as normal as possible, considering the situation. Landing gear should be extended on downwind leg or over the final approach fix, as applicable. Flaps should be used to control the descent through the approach.

Consideration should be given to a loss of the other engine or the necessity to make an engine inoperative go around. Under certain combinations of weight, temperature and altitude, neither level flight nor a single engine go-around may be possible. Do not attempt an engine inoperative go-around after the wing flaps have been extended beyond the normal approach or the published approach flap setting, unless enough altitude is available to allow the wing flaps to be retracted to the normal approach or the published approach flap setting, or less.

PILOT SAFETY AND WARNING SUPPLEMENTS

PILOT PROFICIENCY

PILOT PROFICIENCY

AIRSPEED CONTROL

Flying other than published airspeeds could put the pilot and airplane in an unsafe situation. The airspeeds published in the airplane's operating handbook have been tested and proven to help prevent unusual situations. For example, proper liftoff speed puts the airplane in the best position for a smooth transition to a climb attitude. However, if liftoff is too early, drag increases and consequently increases the takeoff ground run. This procedure also degrades controllability of multi-engine airplanes in the event an engine failure occurs after takeoff. In addition, early liftoff increases the time required to accelerate from liftoff to either the single-engine best rate-of-climb speed (Vyse) or the single-engine best angle-of-climb speed (Vyse) if an obstacle is ahead. On the other hand, if liftoff is late, the airplane will tend to "leap" into the climb. Pilots should adhere to the published liftoff or takeoff speed for their particular airplane.

The pilot should be familiar with the stall characteristics of the airplane when stalled from a normal 1 G stall. Any airplane can be stalled at any speed. The absolute maximum speed at which full aerodynamic control can be safely applied is listed in the airplane's operating handbook as the maneuvering speed. Do not make full or abrupt control movements above this speed. To do so could induce structural damage to the airplane.

TRAFFIC PATTERN MANEUVERS

There have been incidents in the vicinity of controlled airports that were caused primarily by pilots executing unexpected maneuvers. Air Traffic Control (ATC) service is based upon observed or known traffic and airport conditions. Air Traffic Controllers establish the sequence of arriving and departing airplanes by advising them to adjust their flight as necessary to achieve proper spacing. These adjustments can only be based on observed traffic, accurate pilot radio reports, and anticipated airplane maneuvers. Pilots are expected to cooperate so as to preclude disruption of the traffic flow or the creation of conflicting traffic patterns. The pilot in command of an airplane is directly responsible for and is the final authority as to the operation of his or her airplane. On occasion, it may be necessary for a pilot to maneuver an airplane to maintain spacing with the traffic he or she has been sequenced to follow. The controller can anticipate minor maneuvering such as shallow "S" turns. The controller cannot, however, anticipate a major maneuver such as a 360-degree turn. This can result in a gap in the landing interval and more importantly, it causes a chain reaction which may result in a conflict with other traffic and an interruption of the sequence established by the tower or

4 SINGLE L JINE FLIGHT (MULTI-ENGINE AIRPLANES)

PILOT SAFETY AND WARNING SUPPLEMENTS

Some of these factors include: runway length, grade and surface condition (i.e., slippery, dry, etc.), field elevation, temperature, wind speed and direction, terrain or obstructions in the vicinity of the runway, airplane weight and single engine climb capability under the prevailing conditions, among others. The pilot should abort the takeoff, following an engine-out, even if the airplane has litted off the runway, if runway conditions permit. However, under limited circumstances (i.e., short runway with obstructions) the pilot may have to continue the takeoff following a littoff and an engine-out.

While it may be possible to continue the takeoff at light weights and with favorable atmospheric conditions following an engine failure just after liftoff, long distances are required to clear even small obstacles. Distances required to clear an obstacle are reduced under more favorable combinations of weight, headwind component, or obstacle height.

The pilot's decision to continue the takeoff after an engine failure should be based on consideration of either the single engine best angle-of-climb speed (VxsE) if an obstacle is ahead, or the single engine best rate-of-climb speed (VysE) when no obstacles are present in the climb area. Once the single engine best angle-of-climb speed is reached, altitude becomes more important than airspeed until the obstacle is cleared. On the other hand, the single engine best rate-of-climb speed becomes more important when there are no obstacles ahead. Refer to the Owners Manual, Flight Manual or Pilot's Operating Handbook for the proper airspeeds and procedures to be used in the event of an engine failure during takeoff. Refer to the warning placard "To Continue Flight With An Inoperative Engine" in the airplane's operating handbook and/or on the instrument panel for additional information.

Should an engine failure occur at or above these prescribed airspeeds, the airplane, within the limitations of its single engine climb performance, should be maneuvered to a landing. After the airplane has been "cleaned up" following an engine failure (landing gear and wing flaps retracted and the propeller feathered on the inoperative engine), it may be accelerated to its single engine best rate-of-climb speed. If immediate obstructions so dictate, the single engine best angle-of-climb speed may be maintained until the obstacles are cleared. In no case should the speed be allowed to drop below single engine best angle-of-climb speed unless an immediate landing is planned, since decreases. After clearing all immediate obstacles, the airplane should be accelerated slowly to its single engine best rate-of-climb speed and the climb continued to a safe altitude which will allow maneuvering for a return to the airport for landing.

To obtain single engine best climb performance with one engine inoperative, the airplane must be flown in a 3 to 5 degree bank toward the operating engine. The rudder is used to maintain straight flight, compensating for the asymmetrical engine power. The ball of the turn-and-bank indicator should not

PILOT SAFETY AND WARNING SUPPLEMENTS

SINGLE ENGINE FLIGHT (MULTI-ENGINE AIRPLANES)

be centered, but should be displaced about 1/2 ball width toward the operating engine.

The propeller on the inoperative engine must be feathered, the landing gear retracted, and the wing flaps retracted for continued safe flight. Climb performance of an airplane with a propeller windmilling usually is nonexistent. Once the decision to feather a propeller has been made, the pilot should ensure that the propeller feathers properly and remains feathered. The landing gear and wing flaps also cause a severe reduction in climb performance and both should be retracted as soon as possible (in accordance with the

The following general facts should be used as a guide if an engine failure occurs during or immediately after takeoff:

- Discontinuing a takeoff upon encountering an engine failure is advisable under most circumstances. Continuing the takeoff, if an engine failure occurs prior to reaching single engine best angle-ofclimb speed and landing gear retraction, is not advisable.
- Altitude is more valuable to safety immediately after takeoff than is airspeed in excess of the single engine best angle-of-climb speed.
- 3. A windmilling propeller and extended landing gear cause a severe drag penalty and, therefore, climb or continued level flight is improbable, depending on weight, altitude and temperature. Prompt retraction of the landing gear (except Model 337 series), identification of the inoperative engine, and feathering of the propeller is of utmost importance if the takeoff is to be continued.
- Unless touchdown is imminent, in no case should airspeed be allowed to fall below single engine best angle-of-climb speed even though altitude is lost, since any lesser speed will result in significantly reduced climb performance.
- If the requirement for an immediate climb is not present, allow the airplane to accelerate to the single engine best rate-of-climb speed since this speed will always provide the best chance of climb or least altitude loss.

SINGLE ENGINE CRUISE

Losing one engine during cruise on a multi-engine airplane causes little immediate problem for a proficient, properly trained pilot. After advancing power on the operating engine and retrimming the airplane to maintain altitude, if possible the pilot should attempt to determine if the cause of the engine failure can be corrected in flight prior to feathering the propeller. The magneto/ignition switches should be checked to see if they are on, and the fuel flow and fuel quantity for the affected engine should also be verified. If the engine failure was apparently caused by fuel starvation, switching to another fuel tank and/or turning on the auxiliary fuel pump (if equipped) or adjusting the

5 PILOT PROFICIENCY

PILOT SAFETY AND WARNING SUPPLEMENTS

approach controller. The pilot should always advise the controller of the need to make any maneuvering turns.

USE OF LIGHTS

Aircraft position (navigation) and anti-collision lights are required to be illuminated on aircraft operated at night. Anti-collision lights, however, may be turned off when the pilot in command determines that, because of operating conditions, it would be in the interest of safety to do so. For example, strobe lights should be turned off on the ground when they adversely affect ground personnel or other pilots, and in flight when there are adverse reflections from clouds.

To enhance the "see-and-avoid" concept, pilots are encouraged to turn on their rotation beacon any time the engine(s) are operating, day or night. Pilots are further encouraged to turn on their landing lights when operating within ten miles of any airport, day or night, in conditions of reduced visibility and areas where flocks of birds may be expected (i.e., coastal areas, around refuse dumps, etc.). Although turning on airplane lights does enhance the "see-and-avoid" concept, pilots should not become complacent about keeping a sharp lookout for other airplanes. Not all airplanes are equipped with lights and some pilots may not have their lights turned on. Use of the taxi light, in lieu of the landing light, on some smaller airplanes may extend the landing light service life.

Propeller and jet blast forces generated by large airplanes have overturned of damaged several smaller airplanes taxing behind them. To avoid similar results, and in the interest of preventing upsets and injuries to ground personnel from such forces, the FAA recommends that air carriers and commercial operators turn on their rotating beacons anytime their airplane engine(s) are operating. All other pilots, using airplanes equipped with rotating beacons, are also encouraged to participate in this program which is designed to alert others to the potential hazard. Since this is a voluntary program, exercise caution and do not rely solely on the rotating beacon as an indication that airplane engines are operating.

PARTIAL PANEL FLYING

All pilots, and especially instrument rated pilots, should know the emergency procedures for partial instrument panel operation included in their respective operating handbook, as well as any FAA training material on the subject. Routine periodic practice under simulated instrument conditions with a partial instrument panel can be very beneficial to a pilot's proficiency. In this case,

PILOT SAFETY AND WARNING SUPPLEMENTS

5 PILOT PROFICIENCY

the pilot should have a qualified safety pilot monitoring the simulated instrument practice.

If a second vacuum system is not installed and a complete vacuum system failure occurs during flight, the vacuum-driven directional indicator and attitude indicator will be disabled, and the pilot will have to rely on the turn coordinator or the turn and bank indicator if he or she flies into instrument meteorological conditions. If an autopilot is installed, it too will be affected, and should not be used. The following instructions assume that only the electrically-powered turn coordinator is operative, and that the pilot is not completely proficient in instrument flying.

EXECUTING A 180° TURN IN CLOUDS

Upon inadvertently entering a cloud(s), an immediate plan should be made to turn back as follows:

- Note compass heading.
- 2. Note the time in both minutes and seconds.
- When the seconds indicate the nearest half-minute, initiate a standard
 rate left turn, holding the turn coordinator (or turn and bank indicator if
 installed) symbolic airplane wing opposite the lower left wing index
 mark for 60 seconds. Then roll back to level flight by leveling the
 miniature airplane.
- Assure level flight through and after the turn by referencing the altimeter, VSI, and airspeed indicator. Altitude may be maintained with cautious use of the elevator controls.
- Check accuracy of turn by observing the compass heading which should be the reciprocal of the original heading.
- If necessary, adjust heading primarily with skidding motions rather than rolling motions so that the compass will read more accurately.
- Maintain altitude and airspeed by cautious application of elevator control. Avoid over-controlling by keeping the hands off the control wheel as much as possible and steering only with the rudder.

EMERGENCY DESCENT THROUGH CLOUDS

If conditions preclude reestablishment of VFR flight by a 180° turn, a descent through a cloud deck to VFR conditions may be appropriate. If possible, obtain ATC clearance for an emergency descent. To guard against a spiral dive, choose an easterly or westerly heading to minimize compass card swings due to changing bank angles. In addition, keep hands off the control wheel and steer a straight course with rudder control by monitoring the turn and bank or turn coordinator. Occasionally check the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let-down condition as follows:

1. Extend the landing gear (if applicable).

5 PILOT PROFICIENCY

PILOT SAFETY AND WARNING SUPPLEMENTS

- 2. Reduce power to set up a 500 to 800 ft/min rate of descent.
- 3. Adjust mixture(s) as required for smooth engine operation.
- Adjust elevator or stabilizer, rudder and aileron trim controls for a stabilized descent.
- Keep hands off the control wheel. Monitor turn and bank or turn coordinator and make corrections by rudder alone.
- Check trend of compass card movement and make cautious corrections with rudder inputs to stop turn.
- 7. Upon breaking out of the clouds, resume normal cruising flight.

RECOVERY FROM A SPIRAL DIVE

If a spiral dive is encountered while in the clouds, proceed as follows:

- Retard the throttle(s) to idle.
- Stop the turn by using coordinated alleron and rudder control to align the symbolic airplane in the turn coordinator with the horizontal reference line, or center the turn needle and ball of the turn and bank indicator.
 - With a significant airspeed increase or altitude loss while in the spiral, anticipate that the aircraft will pitch nose-up when the wings are level. Take care not to overstress the airframe as a result of this nose-up pitching tendency.
- Cautiously apply control wheel back pressure (if necessary) to slowly reduce the airspeed.
- Adjust the elevator or stabilizer trim control to maintain a constant glide airspeed.
- Keep hands off the control wheel, using rudder control to hold a straight heading. Use rudder trim to relieve unbalanced rudder force, if present.
- If the power-off glide is of sufficient duration, adjust the mixture(s), as required.
- 7. Upon breaking out of the clouds, resume normal cruising flight.

USE OF LANDING GEAR AND FLAPS

A review of airplane accident investigation reports indicates a complacent attitude on the part of some pilots toward the use of checklists for landing gear and wing flap operation. The main confession of most pilots involved in involuntary gear-up landings is that they "forgot" to lower the gear prior to landing. Consistent use of the Before Landing Checklist would have alerted these pilots and prevented a potentially hazardous situation. Other causes of gear-up landings have been attributed to poor judgment, such as not leaving the landing gear extended while performing several landings while remaining in the traffic pattern. The following recommendations will lessen the possibility of a gear-up landing.

PILOT SAFETY AND WARNING SUPPLEMENTS

5 PILOT PROFICIENCY

- Never move the landing gear control switch, handle, or lever while the airplane is on the ground.
- Do not deliberately disable any landing gear warning device or light unless indicated otherwise in the operating handbook.
- Apply brakes before retraction of the landing gear to stop wheel rotation.
- After takeoff, do not retract the landing gear until a positive rate of climb is indicated.
- When selecting a landing gear position, whether up or down, allow the landing gear to complete the initial cycle to the locked position before moving the control switch, handle, or lever in the opposite direction.
- Never exceed the published landing gear operating speed (V_{LO}) while the landing gear is in transit or the maximum landing gear extended speed (V_{LE}).
- Prepare for landing early in the approach so that trim adjustments after lowering landing gear or flaps will not compromise the approach.
- Leave landing gear extended during consecutive landings when the airplane remains in the traffic pattern unless traffic pattern speeds exceed the Maximum Landing Gear Extended Speed (VLE).

A rare, but serious problem that may result from a mechanical failure in the flap system is split wing flaps. This phenomenon occurs when the wing flap position on one wing does not agree with the flap position on the opposite wing, causing a rolling tendency. Split flaps can be detected and safely countered if flap control movement is limited to small increments during inflight operations from full down to full up and full up to full down. It a roll is detected during flap selection, reposition the flap selector to the position from which it was moved and the roll should be eliminated. Depending on the experience and proficiency of the pilot, the rolling tendencies caused by a split flap situation may be controlled with opposite alleron (and differential power for multi-engine aircraft). Some documented contributing factors to split flaps are:

- Pilots exceeding the Maximum Flap Extended (VFE) speed for a given flap setting.
- 2. Mechanical failure.
- Improper maintenance.

ILLUSIONS IN FLIGHT

Many different illusions can be experienced in flight. Some can fead to spatial disorientation. Others can lead to landing errors. Illusions rank among the most common factors cited as contributing to fatal airplane accidents. Various complex motions and forces and certain visual scenes encountered in flight can create illusions of motion and position. Spatial disorientation from these illusions can be prevented only by visual reference to reliable, fixed points on the ground, or to flight instruments.

1. Coriolis illusion - An abrupt head movement in a prolonged constantrate turn that has ceased stimulating the motion sensing system can create the illusion of rotation or movement on an entirely different axis. The disoriented pilot will maneuver the airplane into a dangerous attitude in an attempt to stop this illusion of rotation. This most overwhelming of all illusions in flight may be prevented by not making sudden, extreme head movements, particularly while making prolonged constant-rate turns under IFR conditions.

2. Graveyard spin - A proper recovery from a spin that has ceased stimulating the motion sensing system can create the illusion of spinning in the opposite direction. The disoriented pilot will return the

airplane to its original spin.

3. Graveyard spiral - An observed loss of altitude during a coordinated constant-rate turn that has ceased stimulating the motion sensing system can create the illusion of being in a descent with the wings level. In this case, the disoriented pilot will pull back on the controls, tightening the spiral and increasing the normal load factor on the airplane.

4. Somatogravic illusion - A rapid acceleration during takeoff can create the illusion of being in a nose up attitude. The discriented pilot will push the airplane into a nose low, or dive attitude. A rapid deceleration by a quick reduction of the throttle(s) can have the opposite effect, with the discriented pilot pulling the airplane into a nose up, or stall attitude.

5. Inversion Illusion - An abrupt change from climb to straight and level flight can create the illusion of tumbling backwards. The disoriented pilot will push the airplane abruptly into a nose low attitude, possibly

intensifying this illusion.

6. Elevator Illusion - An abrupt upward vertical acceleration, usually caused by an updraft, can create the illusion of being in a climb. The disoriented pilot will push the airplane into a nose low attitude. An abrupt downward vertical acceleration, usually caused by a downdraft, has the opposite effect, with the disoriented pilot pulling the airplane into a nose up attitude.

7. False horizon - Sloping cloud formations, an obscured horizon, a dark scene spread with ground lights and stars, and certain geometric patterns of ground light can create illusions of not being aligned correctly with the horizon. The discriented pilot will place the airplane in a dangerous attitude.

PILOT SAFETY AND WARNING SUPPLEMENTS

PILOT PROFICIENCY

8. Autokinesis - In the dark, a static light will appear to move about when stared at for many seconds. The disoriented pilot will lose control of the airplane in attempting to align it with the light.

Various surface features and atmospheric conditions encountered during landing can create illusions of incorrect height above and distance away from the runway threshold. Landing errors from these illusions can be prevented by: anticipating them during approaches, aerial visual inspection of unfamiliar airports before landing, using an electronic glide slope or visual approach slope indicator (VASI) system when available, and maintaining optimum proficiency in landing procedures. The following illusions apply to this category.

Runway width illusion - A narrower than usual runway can create the illusion that the airplane is at a higher altitude than it actually is. The pilot who does not recognize this illusion will tend to fly a lower approach, with the risk of striking objects along the approach path, or land short. A wider than usual runway can have the opposite effect, with the risk of flaring high and landing hard or overshooting the runway.

2. Runway and terrain slopes illusion - An up sloping runway, up sloping terrain, or both, can create the illusion that the airplane is at a higher altitude than it actually is. The pilot who does not recognize this illusion will fly a lower approach. A down sloping runway, down sloping approach terrain, or both, can have the opposite effect.

3. Featureless terrain Illusion - An absence of ground features, as when landing over water, darkened areas and terrain made featureless by snow, can create the illusion that the airplane is at a higher altitude than it actually is. The pilot who does not recognize

this illusion will tend to fly a lower approach.

4. Atmospheric illusion - Rain on the windshield can create an illusion of greater height, and a greater distance from the runway. The pilot who does not recognize this illusion will tend to fly a lower approach. Penetration of fog can create the illusion of pitching up. The pilot who does not recognize this illusion will steepen the approach, often quite abruptly.

Ground lighting illusions - Lights along a straight path, such as a road, and even lights on trains, can be mistaken for runway and approach lights. Bright runway and approach lighting systems, especially where few lights illuminate the surrounding terrain, may create the illusion of less distance to the runway. The pilot who does not recognize this illusion will tend to fly a higher approach. Conversely, the pilot overflying terrain which has few lights to provide height cues may make a lower than normal approach.

SPATIAL DISORIENTATION

Spatial disorientation is the confusion of the senses affecting balance, which occurs when a person is deprived of the normal cues upon which he or she depends for "indexing" a sense of balance. These cues include, most prominently, his or her visual reference to the earth's horizon and celestial bodies, and his or her acceptance of the force of gravity as acting vertically. When flying an airplane, the pilot may have all outside visual references obscured by clouds or complete darkness, and his interpretation of the direction of gravity may become confused by forces imposed on his or her body by centrifugal force, accelerations of maneuvering, and turbulence, which may act in any direction.

Spatial disorientation usually leads to vertigo, but is not necessarily identical to it. Vertigo is an uncertain feeling of disorientation, turning, or imbalance, which is usually accompanied by feelings of dizziness or incipient nausea.

When flying by reference to the natural horizon, the attitude of the airplane can be determined visually at all times. During instrument flight, when the natural horizon is not visible, the attitude of the airplane must be determined from the gyro horizon and other flight instruments. Sight, supported by other senses, maintains orientation in either case.

Sometimes during conditions of low visibility, the supporting senses conflict with what is seen or what the pilot believes he sees. When this happens, there is a definite susceptibility to disorientation. The degree of disorientation varies considerably with individual pilots, their proficiency, and the conditions which induced the problem. Complete disorientation, even for a short period of time, can render a pilot incapable of controlling an airplane, to the extent that he cannot maintain level flight, or even prevent fatal turns and diving spirals.

Lack of effective visual reference is common on over-water flights at night, and in low visibility conditions over land. Other contributing factors to discrientation and vertigo are reflections from outside lights, and cloud reflections of beams from rotating beacons or strobe lights.

It is important that all pilots understand the possibility of spatial disorientation, and the steps necessary to minimize the loss of control as a result of it. The following basic items should be known to every pilot:

- Obtain training and maintain proficiency in the control of an airplane by reference to instruments before flying in visibility of less than three miles.
- Refer to the attitude instruments frequently when flying at night or in reduced visibility conditions.

- To maintain competency in night operations, practice should include operations in the traffic pattern, subject to the confusion caused by reflections of ground lights, as well as the control of an airplane by reference to instruments.
- Familiarization with the meteorological conditions which may lead to spatial disorientation is important. These include smoke, fog, haze, and other restrictions to visibility.
- Familiarity with local areas and commonly used flight routes assists in the avoidance of disorientation by permitting the pilot to anticipate and look for prominent terrain features.
- The most important precaution for avoiding disorientation is the habit of thoroughly checking the weather before each flight, while enroute, and near the destination.

A pilot without the demonstrated competence to control an airplane by sole reference to instruments has little chance of surviving an unintentional flight into IFR conditions. Tests conducted by the U.S. Air Force, using qualified instrument pilots, indicate that it may take as long as 35 seconds to establish full control by reference to instruments after disorientation during an attempt to maintain VFR flight in IFR weather. Instrument training and certification and ongoing recurrent training in accordance with FAR Part 61, are designed to provide the pilot with the skills needed to maintain control solely by reference to flight instruments and the ability to ignore the false kinesthetic sensations inherent with flight when no outside references are available.

MOUNTAIN FLYING

A pilot's first experience of flying over mountainous terrain (particularly if most of his or her flight time has been over flatlands) could be a never-to-be-forgotten experience if proper planning is not done and if the pilot is not aware of potential hazards. Those familiar section lines in some regions are not present in the mountains. Flat, level fields for forced landings are practically nonexistent; abrupt changes in wind direction and velocity may occur; severe updrafts and downdrafts are common during high wind conditions, particularly near or above abrupt changes of terrain, such as cliffs or rugged areas; and clouds can build up with startling rapidity. Mountain flying need not be hazardous if you follow the recommendations below:

- For pilots with little or no mountain flying experience, always get dual instruction from a qualified flight instructor to become familiar with conditions which may be encountered before flying in mountainous terrain.
- Plan your route to avoid topography which would prevent a safe forced landing. The route should be near populated areas and well known mountain passes. Sufficient altitude should be maintained to permit gliding to a safe landing in the event of engine failure.
- 3. Always file a flight plan.

UNUSABLE FUEL

Unusable fuel is the quantity of fuel that cannot safely be used in flight. The amount of unusable fuel varies with airplane and fuel system design, and the maximum amount is determined in accordance with Civil or Federal Aviation Regulations (CARs or FARs). Unusable fuel is always included in the airplane's licensed or basic empty weight for weight and balance purposes. Unusable fuel should never be included when computing the endurance of any airplane.

FUEL PLANNING WITH MINIMUM RESERVES

Airplane accidents involving engine power loss continue to reflect ft el starvation as the primary cause or a contributing factor. Some of these accidents were caused by departing with insufficient fuel onboard to complete the intended flight. Fuel exhaustion in flight can mean only one thing - a forced landing with the possibility of serious damage, injury, or death.

A pilot should not begin a flight without determining the fuel required and verifying its presence onboard. To be specific, during VFR conditions, do not take off unless there is enough fuel to fly to the planned destination (considering wind and forecast weather conditions), assuming the airplane's normal cruising airspeed, fly after that for at least 30 minutes during the day, or at least 45 minutes at night.

Departure fuel requirements are a little different when operating under IFR conditions. Do not depart an airport on an IFR trip unless the airplane has enough fuel to complete the flight to the first airport of intended landing (considering weather reports and forecasts) and fly from that airport to the planned alternate airport, and afterwards still fly at least 45 minutes at normal cruising speed.

FLIGHT COORDINATION VS. FUEL FLOW

The shape of most airplane wing fuel tanks is such that, in certain flight maneuvers, the fuel may move away from the fuel tank supply outlet. If the outlet is uncovered, fuel flow to the engine may be interrupted and a temporary loss of power might result. Pilots can prevent inadvertent uncovering of the tank outlet by having adequate fuel in the tank selected and avoiding maneuvers such as prolonged uncoordinated flight or sideslips which move fuel away from the feed lines.

It is important to observe the uncoordinated flight or sideslip limitations listed in the respective operating handbook. As a general rule, limit uncoordinated flight or sideslip to 30 seconds in duration when the fuel level in the selected fuel tank is 1/4 full or less. Airplanes are usually considered in a sideslip anytime the turn and bank "ball" is more than one quarter bail out of the center (coordinated flight) position. The amount of usable fuel decreases with the severity of the sideslip in all cases.

FUEL SELECTION FOR APPROACH/LANDING

On some single-engine airplanes, the fuel selector valve handle is normally positioned to the BOTH position to allow symmetric fuel feed from each wing fuel tank. However, if the airplane is not kept in coordinated flight, unequal fuel flow may occur. The resulting wing heaviness may be corrected during flight by turning the fuel selector valve handle to the tank in the "heavy" wing. On other single-engine airplanes, the fuel selector has LEFT ON or RIGHT ON positions, and takeoffs and landings are to be accomplished using fuel from the fuller tank.

Most multi-engine airplanes have fuel tanks in each wing or in wing tip tanks, and it is advisable to feed the engines symmetrically during cruise so that approximately the same amount of fuel will be left in each side for descent, approach, and landing. If fuel has been consumed at uneven rates between the two wing tanks because of prolonged single-engine flight, fuel leak or siphon, or improper fuel servicing, it is desirable to balance the fuel load by operating both engines from the fuller tank. However, as long as there is sufficient fuel in both wing tanks, even though they may have unequal quantities, it is important to switch the left and right fuel selectors to the left and right wing tanks, respectively, feeling for the detent, prior to the approach. This will ensure that adequate fuel flow will be available to each operating engine if a go-around is necessary. In the case of single-engine operation, operate from the fuller tank, attempting to have a little more fuel in the wing on the side with the operating engine prior to descent.

On all multi-engine airplanes equipped with wing tip fuel tanks, the tip tanks are the main fuel tanks on the tank selector valve controls. Refer to Supplement 12 of this Pilot Safety and Warning Supplements Manual and the applicable airplane operating handbook.

4. Don't fly a light airplane when the winds aloft, at your proposed altitude, exceed 35 miles per hour. Expect the winds to be of much greater velocity over mountain passes than reported a few miles from them. Approach mountain passes with as much altitude as possible. Downdrafts of from 1500 to 2000 feet per minute are not uncommon on the leeward (downwind) side.

 Severe turbulence can be expected near or above changes in terrain, especially in high wind conditions.

Some canyons run into a dead end. Don't fly so far into a canyon that
you get trapped. Always be able to make a 180-degree turn, or if
canyon flying is necessary, fly down the canyon (toward lower terrain),
not up the canyon (toward higher terrain).

 Plan the trip for the early morning hours. As a rule, the air starts to get turbulent at about 10 a.m., and grows steadily worse until around 4 p.m., then gradually improves until dark.

8. When landing at a high altitude airfield, the same indicated airspeed should be used as at low elevation fields. Due to the less dense air at altitude, this same indicated airspeed actually results in a higher true airspeed, a faster landing speed, and a longer landing distance. During gusty wind conditions, which often prevail at high altitude fields, a "power approach" is recommended. Additionally, due to the faster ground speed and reduced engine performance at altitude, the takeoff distance will increase considerably over that required at lower altitudes.

OBSTRUCTIONS TO FLIGHT

Pilots should exercise extreme caution when flying less than 2000 feet above ground level (AGL) because of the numerous structures (radio and television antenna towers) exceeding 1000 feet AGL, with some extending higher than 2000 feet AGL. Most truss type structures are supported by guy wires. The wires are difficult to see in good weather and can be totally obscured during periods of dusk and reduced visibility. These wires can extend approximately 1500 feet horizontally from a structure; therefore, all truss type structures should be avoided by at least 2000 feet, horizontally and vertically.

Overhead transmission and utility lines often span approaches to runways and scenic flyways such as lakes, rivers, and canyons. The supporting structures of these lines may not always be readily visible and the wires may be virtually invisible under certain conditions. Most of these installations do not meet criteria which determine them to be obstructions to air navigation and therefore, do not require marking and/or lighting. The supporting structures of some overhead transmission lines are equipped with flashing strobe lights. These lights indicate wires exist between the strobe equipped structures.

FUEL MANAGEMENT

POOR TECHNIQUES

PILOT SAFETY AND

Poor fuel management is often the cause of aircraft accidents. Some airplane accident reports have listed such poor fuel management techniques as switching to another fuel tank after the before takeoff runup was completed, and then experiencing engine problems on takeoff. Other reports tell of pilots switching fuel tanks at a critical point on the approach to a landing and inadvertently selecting an empty tank when there is not enough time to compensate for the subsequent loss of power. Flying low during day cross-country, or moderately low at night, can be hazardous if a fuel tank runs dry. Too much altitude may be lost during the time it takes to discover the reason for power loss, select a different fuel tank, and restart the engine. Pilots should be thoroughly familiar with the airplane fuel system and tank switching procedures. Furthermore, it is an unsafe technique to run a fuel tank dry as a routine procedure, although there are exceptions. Any sediment or water not drained from the fuel tank could be drawn into the fuel system and cause erratic operation or even total power loss.

FUELING THE AIRCRAFT

The aircraft should be on level ground during all fueling operations, since filling the tanks when the aircraft is not level may result in a fuel quantity less than the maximum capacity. Rapid filling of a fuel tank, without allowing time for air in the tank to escape, may result in a lower fuel quantity. Some single engine aircraft that allow simultaneous use of fuel from more than one tank have fuel tanks with interconnected vent lines. If the tanks are filled with fuel and the aircraft allowed to sit with one wing lower than the other, fuel may drain from the higher tank to the lower and subsequently out the fuel vent. This will result in loss of fuel. This fuel loss may be prevented by placing the fuel selector in a position other than "both".

Some Cessna single-engine airplanes have long, narrow fuel tanks. If your airplane is so equipped, it may be necessary to partially fill each tank alternately, and repeat the sequence as required to completely fill the tanks to their maximum capacity. This method of fueling helps prevent the airplane from settling to a wing-low attitude because of increased fuel weight in the fullest wing tank.

It is always the responsibility of the pilot-in-command to ensure sufficient fuel is available for the planned flight. Refer to the airplane operating handbook for proper fueling procedures.

AIRFRAME ICING

Pilots should monitor weather conditions while flying and should be alert to conditions which might lead to icing. Icing conditions should be avoided when possible, even if the airplane is certified and approved for flight into known icing areas. A climb normally is the best ice avoidance action to take. Alternatives are a course reversal or a descent to warmer air. If icing conditions are encountered inadvertently, immediate corrective action is required.

FLIGHT INTO KNOWN ICING

Flight into known icing is the intentional flight into icing conditions that are known to exist. Icing conditions exist anytime the indicated OAT (outside air temperature) is +10°C or below, or the RAT (ram air temperature) is +10°C or below, and visible moisture in any form is present. Any airplane that is not specifically certified for flight into known icing conditions, is prohibited by regulations from doing so.

Ice accumulations significantly alter the shape of the airfoil and increase the weight of the aircraft. Ice accumulations on the aircraft will increase stall speeds and alter the speeds for optimum performance. Flight at high angles of attack (low airspeed) can result in ice buildup on the underside of wings and horizontal tail aft of the areas protected by boots or leading edge anti-ice systems. Trace or light amounts of icing on the horizontal tail can significantly alter airfoil characteristics, which will affect stability and control of the aircraft.

Inflight ice protection equipment is not designed to remove ice, snow, or frost accumulations on a parked airplane sufficiently enough to ensure a safe takeoff or subsequent flight. Other means (such as a heated hangar or approved deicing solutions) must be employed to ensure that all wing, tail, control, propeller, windshield, static port surfaces and fuel vents are free of ice, snow, and frost accumulations, and that there are no internal accumulations of ice or debris in the control surfaces, engine intakes, brakes, pitot-static system ports, and fuel vents prior to takeoff.

AIRPLANES CERTIFIED FOR FLIGHT INTO KNOWN ICING

An airplane certified for flight into known icing conditions must have all required FAA approved equipment installed and fully operational. Certain airplanes have a flight into known icing equipment package available which, if installed in its entirety and completely operational, allows intentional penetration of areas of known icing conditions as reported in weather sequences or by PIREPS.

7 AIRFRAME ICING

PILOT SAFETY AND WARNING SUPPLEMENTS

This known icing package is designed specifically for the airplane to provide adequate in-flight protection during normally encountered icing conditions produced by moisture-laden clouds. It will not provide total protection under severe conditions such as those which exist in areas of freezing rain, nor will it necessarily provide complete protection for continuous operation in extremely widespread areas of heavy cloud moisture content. The installed equipment should be used to protect the airplane from ice white seeking a different altitude or routing where ice does not exist. During all operations, the pilot must exercise good judgement and be prepared to alter his flight if conditions exceed the capacity of the ice protection equipment or if any component of this equipment fails.

The airplane's operating handbook will indicate the required equipment for intentional flight into known icing conditions. Such equipment may include: wing leading edge deice/anti-ice system, vertical and horizontal stabilizer leading edge deice/anti-ice system, propeller deice/anti-ice system, windshield anti-ice, heated pitot tube, heated static ports and fuel vents, heated stall warning vane/transducer or optional angle-of-attack lift sensor vane, ice detector light(s), and increased capacity electrical and vacuum systems.

If there is any doubt whether the airplane is certified or has all the required equipment, the pilot should assume that the airplane is not certified for flight into known icing and avoid any encounters with areas of icing.

KINDS OF ICING

Airframe icing is a major hazard. It is at its worst when the supercooled (liquid below freezing temperature) water droplets are large and plentiful. Droplets of this type are usually found in cumulus clouds and are the cause of "clear ice". Clear ice is transparent ice deposited in layers, and may be either smooth or rough. This ice coats more of the wing than "rime ice" because the droplets flow back from the leading edge over the upper and lower wing surface before freezing, and the rate of accumulation is higher.

Rime ice is an opaque, granular, and rough deposit of ice that is usually encountered in stratus clouds. Small supercooled droplets freeze instantly when struck by the leading edges of the airplane. Rime ice can quickly change the drag characteristics of the airplane. Under some conditions, a large "double horn" buildup on the leading edges can occur which drastically alters the airfoil shape. Altitude changes usually work well as an avoidance strategy for rime ice. In colder temperatures, these types of supercooled water droplets quickly convert to ice crystals.

lcing in precipitation comes from freezing rain or drizzle which falls from warmer air aloft to colder air below. This results in a very rapid buildup of clear ice, and must be avoided by all means available to the pilot.

PILOT SAFETY AND WARNING SUPPLEMENTS

7 AIRFRAME ICING

If it is snowing, the problem is not so much the snow sticking to the airplane as the icing caused by the supercooled water droplets in the clouds from which the snow is falling. The amount of ice will depend upon cloud saturation.

Pilots should report all icing conditions to ATC/FSS, and if operating under IFR conditions, request new routing or altitude if icing will be a hazard. Be sure to give type of airplane when reporting icing.

The following describe how to report icing conditions:

- Trace Ice becomes visible. Rate of accumulation is slightly greater than the rate of sublimation. Anti-ice equipment must be on and deice equipment may or may not be required.
- Light The rate of accumulation may create a problem if flight is prolonged in this environment (over 1 hour). Occasional use of deicing equipment and continuous use of anti-icing equipment removes/prevents accumulation.
- Moderate The rate of accumulation is such that even short encounters become potentially hazardous and use of deicing/anti-icing equipment and flight diversion is necessary.
- Severe The rate of accumulation is such that deicing/anti-icing equipment fails to reduce or control the hazard. Immediate flight diversion is necessary.

RESULTS OF ICING

Airplane performance can be severely reduced by ice accumulation. Accumulation of 1/2 inch of ice on the leading edges of the wings and empennage can cause a large loss in rate of climb, a cruise speed reduction of up to 30 KIAS, as well as a significant buffet and stall speed increase. Even if the airplane is certified for flight into known icing and the equipment is working properly, ice remaining on unprotected areas of the airplane can cause large performance losses. With one inch of residual ice accumulation, these losses can double, or even triple. Ice accumulation also will increase airplane weight.

INADVERTENT ICING ENCOUNTER

Flight into icing conditions is not recommended. However, an inadvertent encounter with these conditions is possible. The following are things to consider doing if inadvertent icing is experienced. These items are not intended to replace procedures described in any operating handbook. Instead, this list has been generated to familiarize pilots of older model Cessnas with guidelines they can use in the event of an inadvertent icing condition. The best procedure is a change of altitude, or course reversal to escape the icing conditions.

- Turn pitot heat, stall warning heat, propeller deice/anti-ice, and windshield anti-ice switches ON (if installed).
- Change altitude (usually climb) or turn back to obtain an outside air temperature that is less conducive to icing.
- Increase power as necessary to maintain cruise airspeed and to minimize ice accumulation. Maintain a minimum indicated airspeed of Vy +10 KIAS until assured that all ice is off the airframe.
- Turn cabin heat and defroster controls full on and open defrost control to obtain maximum windshield defroster effectiveness.
- Increase engine speed to minimize ice buildup on propeller blades. If
 excessive vibration is noted, momentarily reduce engine speed with
 the propeller control, and then rapidly move the control full forward.
 Cycling the RPM flexes the propeller blades and high RPM increases
 centrifugal force, causing ice to shed more readily.
- 3. Watch for signs of induction air filter ice. Regain manifold pressure by increasing the throttle setting and/or selecting alternate air or carburetor heat. If ice accumulates on the intake filter (requiring alternate air), a decrease of manifold pressure will be experienced, and the mixture should be adjusted as required.
- If Icing conditions are unavoidable, plan a landing at the nearest airport. In the event of an extremely rapid ice buildup, select a suitable "off airport" landing site.
- Ice accumulation of 1/4 inch or more on the wing leading edges may require significantly higher power and a higher approach and landing speed, and result in a higher stall speed and longer landing roll.
- If practical, open the window and, scrape ice from a portion of the windshield for visibility in the landing approach.
- Approach with reduced flap extension to ensure adequate elevator effectiveness in the approach and landing.
- 11. Avoid a slow and high flare-out.
- 12. Missed approaches should be avoided whenever possible, because of severely reduced climb capability. However, if a go-around is mandatory, make the decision much earlier in the approach than normal. Apply maximum power while retracting the flaps slowly in small increments (if extended). Retract the landing gear after immediate obstacles are cleared.

WEATHER

ALERTNESS

Most pilots pay particularly close attention to the business of flying when they are intentionally operating in instrument weather conditions. On the other hand, unlimited visibility tends to encourage a sense of security which may not be justified. The pilot should be alert to the potential of weather hazards, and prepared if these hazards are encountered on every flight.

VFR JUDGMENT

Published distance from clouds and visability regulations establish the minimums for VFR flight. The pilot who uses even greater margins exercises good judgment. VFR operation in class D airspace, when the official visibility is 3 miles or greater, is not prohibited, but good judgment would dictate that VFR pilots keep out of the approach area under marginal conditions.

Precipitation reduces forward visibility. Although it is perfectly legal to cancel an IFR flight plan whenever the pilot feels he can proceed VFR, it is usually a good practice to continue IFR into a terminal area until the destination airport is in sight.

While conducting simulated instrument flights, pilots should ensure that the weather provides adequate visibility to the safety pilot. Greater visibility is advisable when flying in or near a busy airway or close to an airport.

IFR JUDGMENT

The following tips are not necessarily based on Federal Aviation Regulations, but are offered as recommendations for pilot consideration. They do, however, address those elements of IFR flight that are common causes of accidents.

- All pilots should have an annual IFR proficiency check, regardless of IFR hours flown
- For the first 25 hours of pilot-in-command time in airplane type, increase ILS visibility minimums and raise nonprecision approach minimums.
- An operating autopilot or wing leveler is strongly recommended for single pilot IFR operations.
- Do not depart on an IFR flight without an independent power source for attitude and heading systems, and an emergency power source for

5. Be sure the airplane has enough fuel to fly to the destination with a headwind calculated at 125 percent of the forecast wind, and a tailwind calculated at 75 percent of forecast wind. Also, include enough fuel to miss the approach at the destination airport, climb to cruise altitude and fly an approach at an alternate airport, plus 45 minutes of fuel for low altitude holding.

The IFR takeoff runway should meet the criteria of the acceleratestop/go distances for that particular twin-engine airplane, or 200 percent of the distance to clear a 50-foot obstacle for a single.

7. Do not enter an area of embedded thunderstorms without on-board weather detection equipment (radar and/or Stormscope_{TM}) and unless cloud bases are at least 2000 feet above the highest terrain, terrain is essentially level, and VFR can be maintained. Avoid all cells by five miles, and severe storms by 20 miles.

 Do not enter possible icing conditions unless all deice and anti-ice systems are fully operational, or the weather provides at least a 1000foot ceiling and three miles visibility for the entire route over level terrain, and the surface temperatures are greater than 5°C.

9. Adhere to weather minimums, missed approach procedures and requirements for visual contact with the runway environment. If an approach is missed, with the runway not in sight at the appropriate time because of weather conditions, do not attempt another approach unless there is a valid reason to believe there has been a substantial improvement in the weather.

10. Observe the minimum runway requirement for an IFR landing. The minimum IFR runway length for propeller driven airplanes should be considered 200 percent of maximum landing distance. Increase these distances 90 percent for a wet runway and 150 percent for ice on the runway.

11. Make a missed approach if speed and configuration are not stable inside the middle marker or on nonprecision final, or if the touchdown aiming point will be missed by more than 1000 feet. If an approach is missed because of pilot technique, evaluate the reasons and options before attempting another approach.

 Use supplemental oxygen above a cabin altitude of 5000 feet at night, and above 10,000 feet during the day.

WIND

The keys to successfully counteracting the effects of wind are proficiency, understanding the wind response characteristics of the airplane, and a thoughtful approach to the operation. Some operating handbooks indicate a maximum demonstrated crosswind velocity, but this value is not considered to be limiting. There is an ultimate limit on wind for safe operation, which varies with the airplane and pilot. The lighter the airplane and the lower the stalling speed, the less wind it will take to exceed this limit. The way an airplane rests

PILOT SAFETY AND WARNING SUPPLEMENTS

8 WEATHER

on its landing gear affects handling characteristics. If it sits nose down, the wing will be unloaded and the airplane will handle better in wind than an airplane which sits in a nose up attitude, creating a positive angle of attack. For the latter type, the full weight of the airplane cannot be on the wheels as the airplane is facing into the wind. Airplanes with these characteristics cause pilots to work harder to keep the airplane under control.

CROSSWIND

While an airplane is moving on the ground, it is affected by the direction and velocity of the wind. When taxiing into the wind, the control effectiveness is increased by the speed of the wind. The tendency of an airplane to weathervane is the greatest while taxiing directly crosswind, which makes this maneuver difficult. When taxiing in crosswind, speed and use of brakes should be held to a minimum and all controls should be utilized to maintain directional control and balance (see Crosswind Taxi Diagram, Figure 1).

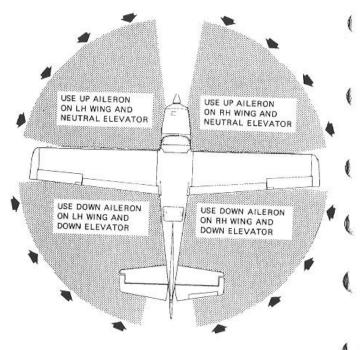
Takeoffs into strong crosswinds are normally performed with the minimum flap setting necessary for the field length. With the ailerons deflected into the wind, the airplane should be accelerated to a speed slightly higher than normal (on multi-engine airplanes, additional power may be carried on the upwind engine until the rudder becomes effective), and then the airplane should be flown off abruptly to prevent possible settling back to the runway while drifting. When clear of the ground and any obstacle, the pilot should execute a coordinated turn into the wind to correct for drift. The pilot's ability to handle a crosswind is more dependent upon pilot proficiency than airplane limitations.

A crosswind approach and landing may be performed using either the winglow, crab, or combination drift correction technique, depending upon the training, experience, and desires of the pilot. Use of the minimum flap setting required for the field length is recommended. Whichever method is used, the pilot should hold a straight course after touchdown with the steerable nose or tailwheel and occasional differential braking, if necessary.

On those airplanes with a steerable tailwheel, landings may be made with the tailwheel lock (if installed) engaged or disengaged. Although the use of the lock is left to the individual pilot's preference, it should be used during strong crosswind landings on rough fields with a heavily loaded airplane. If the lock were disengaged, this condition could lead to a touchdown with a deflected tailwheel and subsequent external forces on the tailwheel that are conducive to shimmy.

LOW LEVEL WIND SHEAR

Low level wind shear is the interflow of air masses near the ground, having different speeds and directions. As an airplane passes through the narrow boundary between the two air masses, large fluctuations in airspeed may be encountered depending on the difference in speed and direction of the air masses. Low level wind shear can be experienced through both the horizontal and vertical plane. One major risk with a wind shear encounter is that a sudden loss of airspeed may render the airplane out of control near the ground. Recovery depends on altitude and the magnitude of the airspeed loss.


A wind shear encounter can be reported as either positive or negative. A positive wind shear is one in which the headwind component suddenly increases. The airplane's inertia makes it tend to maintain the same velocity through space, not through air, so the first thing a pilot is likely to notice is an increase in airspeed. The opposite case, a negative wind shear, is a sudden decrease in headwind component. The airplane will begin to sink immediately, as lift is decreased by the reduced airspeed; and as the natural aerodynamics, and/or the pilot, lowers the nose, the descent rate increases.

The effects of wind shear on smaller airplanes are sometimes less severe than on large jetliners. Smaller airplanes have less mass (and therefore less inertia), and their speed can change more quickly. Thus, a smaller airplane can return to its trimmed speed, after encountering a wind shear, more rapidly than a larger, heavier one.

TYPES OF WIND SHEAR CONDITIONS

Wind shear is encountered in several distinct weather scenarios. Within a frontal zone, as one air mass overtakes another, variations in wind speed and direction can be significant. Fast moving cold fronts, squall lines, and gust fronts pose the highest risk.

A temperature inversion can present a fast moving air mass directly above a very stable calm layer at the surface. Under these conditions an airplane on approach with a headwind aloft will experience a rapid loss of airspeed during descent through the boundary layer to the calm air beneath.

CODE

NOTE

WIND DIRECTION

Strong quartering tail winds required caution. Avoid sudden bursts of the throttle and sharp braking when the airplane is in this attitude. Use the steerable nose or tail wheel and rudder to maintain direction.

Figure 1. Crosswind Taxi Diagram

The most violent type of wind shear is that induced by convective activity and thunderstorms. Downdrafts created by local areas of descending air (roughly 5 to 20 miles diameter) can exceed 700 feet per minute. At times, very small areas of descending air (1 mile or so in diameter), called microbursts, care reach vertical speeds of 6000 feet per minute or more. Such downdrafts generate significant turbulence and exceed the climb capability of many airplanes. In addition, as the downdraft/microburst reaches the ground, the air spreads in all directions. The pilot entering the area at relatively low altitude will likely experience an increase in airspeed followed by a dramatic decrease in airspeed and altitude while exiting the area.

INDICATIONS OF WIND SHEAR

The winds near or around the base of a thunderstorm are largely unpredictable, but there are identifiable signs that may indicate that wind shear conditions exist. Small areas of rainfall, or shafts of heavy rain are clues to possible wind shear conditions. Virga, or rain shafts that evaporate before reaching the ground, may indicate cool, dense air sinking rapidly and may contain microburst winds. On the ground, such signs as trees bending in the wind, ripples on water, or a line of dust clouds should alert the pilot.

With the presence of a strong temperature inversion, if low clouds are moving rapidly but winds are calm or from a different direction on the surface, a narrow wind shear zone might exist and the pilot may elect to use a higher climb speed until crossing the zone. Conversely, while in the landing pattern or on an approach, if the reported surface winds are significantly different than that being experienced in flight, it must be taken as a warning to the potential of wind shear.

A pilot who has been holding a wind correction angle on final approach, and suddenly finds that a change has to be made – i.e., the runway (or CDI needle) starts moving off to the side – most likely encountered wind shear. The usual techniques apply, such as an appropriate heading change, but more importantly, the pilot has been alerted to the presence of a wind shear situation and should be ready to deal with a more serious headwind to tailwind shear at any time.

COPING WITH WIND SHEAR

A pilot can cope with wind shear by maintaining a somewhat higher airspeed not to exceed V_A (maneuvering speed), since the conditions conducive to wind shear are also often conducive to turbulence. Pilots should be alert for negative wind shear; if the airspeed is suddenly decreasing, the sink rate increasing, or more than usual approach power is required, a negative wind shear may well have been encountered. Also, the closer the airplane gets to

PILOT SAFETY AND WARNING SUPPLEMENTS

8 WEATHER

the ground, the smaller the margin for sink recovery. Be prepared to go around at the first indication of a negative wind shear. A positive wind shear may be followed immediately by a negative shear.

Some larger airports are equipped with a low-level wind shear aferting system (LLWAS). Many have ATIS, and or AWOS wind information. All elements of the weather conditions including pilot reports should be carefully considered and any pilot who experiences wind shear should warn others.

In summary, all pilots should remain alert to the possibility of low level wind shear. If wind shear is encountered on final approach, usually characterized by erratic airspeed and aitimeter indications and almost always associated with uncommanded airplane attitude changes, do not hesitate to go around. If the approach profile and airspeed cannot be reestablished, it cannot be emphasized too strongly that a go-around is often the pilot's best course of action, and the earlier the decision to go around, the better the chance of recovery.

THUNDERSTORM AVOIDANCE

Much has been written about thunderstorms. They have been studied for years, and while considerable information has been learned, the studies continue because questions still remain. Knowledge and weather radar have modified our attitudes toward thunderstorms. But any storm recognizable as a thunderstorm should be considered hazardous. Never regard any thunderstorm lightly, even when radar observers report the echoes are of light intensity. Avoiding all thunderstorms is the best policy.

The following are some do's and don'ts of thunderstorm avoidance:

- Don't land or takeoff in the face of an approaching thunderstorm. A sudden gust front of low level turbulence (wind shear) could cause loss of control.
- Don't attempt to fly under a thunderstorm, even if you can see through to the other side. Turbulence and wind shear under the storm is likely and hazardous.
- Don't fly near clouds containing embedded thunderstorms. Scattered thunderstorms that are not embedded usually can be visually circumnavigated.
- Don't trust the visual appearance to be a reliable indicator of the turbulence inside a thunderstorm.
- Do avoid, by at least 20 miles, any thunderstorm identified as severe
 or giving an intense radar echo. This is especially true under the anvil
 of a large cumulonimbus.
- Do circumnavigate the entire area if the area has 6/10 thunderstorm coverage.
- Do remember that vivid and frequent lightning indicates the probability of a severe thunderstorm.

8 WEATHER

PILOT SAFETY AND WARNING SUPPLEMENTS

 Do regard, as extremely hazardous, any thunderstorm with tops 35,000 feet or higher, whether the top is visually sighted or determined by radar.

Do check the convective outlook during weather briefings.

The following are some do's and don'ts during inadvertent thunderstorm area penetration:

 Do keep your eyes on the instruments. Looking outside the cabin can increase the danger of temporary blindness from lightning.

Don't change power settings; maintain settings for the recommended turbulent air penetration speed.

3. Do maintain a generally constant attitude.

 Don't attempt to maintain altitude. Maneuvers made in attempting to maintain an exact altitude increase the stress on the airplane.

5. Exit the storm as soon as possible.

A pilot on an IFR flight plan must not deviate from an approved route or altitude without proper clearance, as this may place him in conflict with other air traffic. Strict adherence to traffic clearance is necessary to assure an adequate level of safety.

Always remember, all thunderstorms are potentially hazardous and the pilot is best advised to avoid them whenever possible.

FROM WARM WEATHER TO COLD WEATHER

Flying from warm weather to cold weather can do unusual things to airplanes. To cope with this problem, pilots must be alerted to a few preparations. If the airplane is serviced with a heavier grade of oil, such as SAE 50, the oil should be changed to a lighter grade such as SAE 30 before thying into very cold weather. If use of a multi-viscosity oil is approved, it is recommended for improved starting in cold weather. Refer to the airplane operating handbook or maintenance manual for approved oils. An engine/airplane winterization kit may be available for the airplane. It usually contains restrictive covers for the cowl nose cap and/or oil cooler and engine crankcase breather for flight in very cold weather. Proper preflight draining of the fuel system from all drains is especially important and will help eliminate any free water accumulation. The use of fuel additives, such as Prist or EGME, may also be desirable. Refer to the airplane operating handbook or maintenance manual for approved fuel additives.

In order to prevent propeller freeze-up when operating in very cold weather, it may be necessary to exercise the constant speed prop every few minutes. This can be accomplished by moving the prop controls forward or aft from their cruise position 300 RPM and back during flight.

PILOT SAFETY AND WARNING SUPPLEMENTS

8 WEATHER

ICE, SNOW, FROST, Etc.

For any extended time, it is always best to park an airplane in a hangar, particularly during inclement weather. When this is not possible, all ice, snow, frost, etc., must be removed from the entire airframe and engine(s) prior to starting.

The presence of ice, snow, frost, etc., on the wings, tail, control surfaces (externally and internally), etc., is hazardous. Safe operation depends upon their removal. Too often, their effects on airplane performance are not completely understood or appreciated.

WAKE TURBULENCE

Airplanes are significantly affected by the wake turbulence of any heavier aircraft or helicopter. Wake turbulence dissipation and displacement are functions of elapsed time and prevailing wind speed and direction. During calm conditions, severe turbulence generated by large aircraft can persist as long as 10 minutes. Delay takeoff to ensure dissipation and displacement of wake turbulence. When it is necessary to take off behind a heavier aircraft or helicopter, avoid wake turbulence, particularly wake vortices, by vertical or lateral spacing or an appropriate time delay.

Vertical avoidance is appropriate to longer runways where operations can be completed on portions of the runway not affected by the vortices of preceding aircraft and flying above areas where vortices will be present is possible. Become airborne well before the preceding aircraft rotation point and climb above its flight path, or lift off beyond the touchdown point of a landing aircraft. When it is necessary to land behind another aircraft, remain above its approach path and land beyond its touchdown point. Touchdown prior to the rotation point of a departing aircraft.

Lateral movement of wake vortices is only possible when a significant crosswind exists and is not detectable unless exhaust smoke or dust marks the vortices. Consider offsetting the takeoff path to the upwind side of the runway.

PILOT SAFETY AND WARNING SUPPLEMENTS

9 RESTRAINT SYSTEMS

RESTRAINT SYSTEMS

SEAT RESTRAINTS

Records of general aviation airplane accident injuries reveal a surprising number of instances in which the occupants were not properly using the available restraint system, indicating the presence of a complacent attitude during airplane preflight briefing inspections. An unbuckled restraint system during a critical phase of flight, such as during turbulence, could cause loss of control of the airplane and/or injuries. Although the ultimate responsibility lies with the pilot-in-command, each user of a restraint system should be cognizant of the importance of proper use of the complete restraint system.

Pilots should ensure that all occupants properly use their individual restraint systems. The system should be adjusted snug across the body. A loose restraint belt will allow the wearer excessive movement and could result in serious injuries. The wearer should not allow sharp or hard items in pockets or other clothing to remain between their body and the restraint system to avoid discomfort or injury during adverse flight conditions or accidents. Each occupant must have their own restraint system. Use of a single system by more than one person could result in serious injury.

Occupants of adjustable seats should position and lock their seats before fastening their restraint system. Restraint belts can be lengthened before use by grasping the sides of the link on the link half of the belt and pulling against the belt. Then, after locking the belt link into the belt buckle, the belt can be tightened by pulling the free end. The belt is released by pulling upward on the top of the buckle. Restraint systems must be fastened anytime the airplane is in motion. Before takeoff, the pilot should brief all passengers on the proper use, including the method of unlatching the entire restraint system, in the event that emergency egress from the airplane is necessary.

Small children must be secured in an approved child restraint system as defined in FAR 91.107 "Use of safety belts, shoulder harnesses, and child restraint systems". The pilot should know and follow the instructions for installation and use provided by the seat manufacturer. The child restraint system should be installed in an aircraft seat other than a front seat. If the child restraint system is installed in a front seat, the pilot must ensure that it does not interfere with full control movement or restrict access to any aircraft controls. Also, the pilot should consider whether the child restraint system could interfere with emergency egress. Refer to AC 91-52A, "Use of Child Seats In Aircraft" for more information.

If shoulder restraints are not installed, kits are available from Cessna or from other approved sources. Cessna strongly recommends the installation of shoulder harnesses.

Reissue - 1 June 1998

SEAT STOPS/LATCHES

The pilot should visually check the seat for security on the seat tracks and assure that the seat is locked in position. This can be accomplished by visually ascertaining pin engagement and physically attempting to move the seat fore and aft to verify the seat is secured in position. Failure to ensure that the seat is locked in position could result in the seat sliding aft during a critical phase of flight, such as initial climb. Mandatory Service Bulletin SEB89-32 installs secondary seat stops and is available from Cessna.

The pilot's seat should be adjusted and locked in a position to allow full rudder deflection and brake application without having to shift position in the seat. For takeoff and landing, passenger seat backs should be adjusted to the most upright position.

SECURITY IN AFT-FACING SEATS

Some aft-facing seats are adjustable fore and aft, within the limits of the seat stops. Ensure the seat stop pins are engaged with the holes in the seat tracks before takeoff and landing. The restraint system should be worn anytime the seat is occupied. Assure that the seats are installed in the correct positions. Approved seat designs differ between forward-facing and rear-facing seats and proper occupant protection is dependent upon proper seat installation.

PILOT SAFETY AND WARNING SUPPLEMENTS

FUEL SYSTEM CONTAMINATION

FUEL SYSTEM CONTAMINATION

ADEQUATE PREFLIGHT OF THE FUEL SYSTEM

A full preflight inspection is recommended before each flight for general aviation airplanes. Inspection procedures for the fuel system must include checking the quantity of fuel with the airplane on level ground, checking the security of fuel filler caps and draining the fuel tank sumps, fuel reservoir(s), fuel line drain(s), fuel selector drains, and fuel strainer(s). To ensure that no unsampled fuel remains in the airplane, an adequate sample of fuel from the fuel strainer must be taken with the fuel selector valve placed in each of its positions (BOTH, LEFT, RIGHT, etc.). Some Cessna airplanes are equipped with a fuel reservoir(s). If so equipped, the pilot should be aware of the location of the fuel reservoir(s) and its drain plug or quick-drain. The fuel reservoir(s) on most single-engine airplanes is located near the fuel system low point where water will accumulate. Therefore, the fuel reservoir(s) must be drained routinely during each preflight inspection. Periodically check the condition of the fuel filler cap seals, pawls, and springs for evidence of wear and/or deterioration which indicates a need for replacement. Check fuel cap adapters and seals to insure that the sealing surfaces are clean and not rusted or pitted. Deformed pawls may affect the sealing capabilities of the seals and/or cause it to be exposed to detrimental weather elements. Precautions should be taken to prevent water entry into fuel tanks, due to damaged filler caps and every effort made to check and remove all water throughout the fuel system. Umbrella caps will assist in preventing water entry into the fuel tank through the fuel filler.

It is the pilot's responsibility to ensure that the airplane is properly serviced before each flight with the correct type of fuel. The pilot must take the time to inspect the airplane thoroughly, making sure all of the fuel filler caps are installed and secured properly after visually checking the fuel quantity with the airplane on level ground. During the check of the fuel tanks, observe the color and odor of the fuel while draining a generous sample from each sump and drain point into a transparent container. Check for the presence of water, dirt, rust, or other contaminants. Never save the fuel sample and risk the possibility of contaminating the system. Also, ensure that each fuel tank vent is clear of restrictions (i.e., dirt, insect nests, ice, snow, bent or pinched tubes, etc.). Refer to the airplanes Maintenance Manual for for fuel tank vent removal and inspection if needed.

PROPER SAMPLING FROM QUICK DRAINS

The fuel system sumps and drains should always be drained and checked for contaminants after each refueling and during each preflight inspection. Drainat least a cupful of fuel into a clear container to check for solid and/or liquid contaminants, and proper fuel grade. If contamination is observed, take further samples at all fuel drain points until fuel is clear of contaminants; then, gently rock wings and, if possible, lower the tail to move any additional contaminants to the sampling points. Take repeated samples from all fuel drain points until all contamination has been removed. If excessive sampling is required, completely defuel, drain and clean the airplane fuel system, and attempt to discover where or how the contamination originated before the airplane flies again. Do not fly the airplane with contaminated or unapproved fuel. If an improper fuel type is detected, the mandatory procedure is to completely defuel and drain the fuel system.

Extra effort is needed for a proper preflight of all fuel drains on a float plane. If water is detected after rocking the wings and lowering the tail, the aircraft should not be flown until after the fuel system is completely drained and

80 versus 100 OCTANE FUEL

When 80 octane (red) fuel began to be replaced by 100LL (blue) there was concern about the service life expectancy of low compression engines. It was claimed that some engines experienced accelerated exhaust valve erosion and valve guide wear from the use of highly leaded 100/130 (green) avgas in engines that were rated to use a minimum grade of 80 octane fuel. Engine manufacturers have provided amended operating procedures and maintenance schedules to minimize problems resulting from the use of high lead 100/130 avgas. Experience has now proven that low-compression aircraft engines can be operated safely on 100LL avgas providing they are regularly operated and serviced in accordance with the operating handbook or other officially approved document.

AVGAS versus JET FUEL

2

Occasionally, airplanes are inadvertently serviced with the wrong type of fuel. Piston engines may run briefly on jet fuel, but detonation and overheating will soon cause power failure. All piston-engine airplanes should have fuel filler restrictors installed to prevent jet fuel from being pumped into the fuel tanks. An engine failure caused by running a turbine engine on the wrong fuel may not be as sudden, but prolonged operation on avgas will severely damage the engine because of the lead content and differing combustion temperature of the fuel. Time limitations for use of avgas in turbine engines are listed in the operating handbook.

AUTOMOTIVE GASOLINE/FUEL

Never use automotive gasoline in an airplane unless the engine and airplane fuel system are specifically certified and approved for automotive gasoline use. The additives used in the production of automotive gasoline vary widely throughout the petroleum industry and may have deteriorating effects on airplane fuel system components. The qualities of automotive gasoline can induce vapor lock, increase the probability of carburetor icing, and can cause internal engine problems.

FUEL CAP SECURITY

The consequence of a missing or incorrectly installed fuel filler cap is inflight fuel siphoning. Inflight siphoning may distort the fuel cell on some airplanes with bladder-type fuel cells. This distortion will change the fuel cell capacity, and may interfere with the operation of the fuel quantity indicator sensing mechanism inside the cell. This condition will generally cause an erroneous and misleading fuel quantity reading and may result in incomplete filling for the next flight.

CONTAMINATION

Solid contamination may consist of rust, sand, pebbles, dirt, microbes or bacterial growth. If any solid contaminants are found in any part of the fuel system, drain and clean the airplane fuel system. Do not fly the airplane with fuel contaminated with solid material.

Liquid contamination is usually water, improper fuel type, fuel grade, or additives that are not compatible with the fuel or fuel system components. Liquid contamination should be addressed as set forth in the section entitled "Proper Sampling from Quick Drains", and as prescribed in the airplane's approved flight manual.

10

FUEL PUMP OPERATION

AUXILIARY FUEL PUMP OPERATION - GENERAL

The engine-driven fuel pump is designed to supply an engine with a steady, uninterrupted flow of fuel. Temperature changes, pressure changes, agitation in the fuel lines, fuel quality, and other factors can cause a release of vapor in the fuel system. Some airpianes (single and multi-engine) incorporate an auxiliary fuel pump to reduce excess fuel vapor in the fuel supply for each engine. This pump is also used to ensure that a positive supply of fuel is available in the event the engine driven fuel pump should fail.

FUEL VAPOR

Under hot, high altitude conditions, or in situations during a climb that are conducive to fuel vapor formation, it may be necessary to utilize the auxiliary fuel pump(s) to attain or stabilize the fuel flow required for proper engine operation. Use the auxiliary fuel pump(s) in all conditions where there is any possibility of excessive fuel vapor formation or temporary disruption of fuel flow in accordance with operating handbook procedures.

SINGLE ENGINE FUEL PUMP OPERATION (CARBURETED ENGINE)

On some carbureted, high wing, single engine airplanes, the auxiliary fuel pump should be turned on anytime the indicated fuel pressure falls below the minimum. Typically this would only occur in an extreme climb attitude following failure of the engine driven fuel pump. Consult the operating handbook of the affected model for a detailed description of the procedure.

SINGLE ENGINE FUEL PUMP OPERATION (PRECISION/BENDIX FUEL INJECTED ENGINE)

The auxiliary fuel pump is used primarily for priming the engine before starting. Priming is accomplished through the regular injection system. If the auxiliary fuel pump switch is placed in the ON position for prolonged periods with the master switch turned on, the mixture rich, and the engine stopped, the intake manifolds will become flooded.

FUEL PUMP OPERATION

PILOT SAFETY AND WARNING SUPPLEMENTS

The auxiliary fuel pump is also used for vapor suppression in hot weather, Normally, momentary use will be sufficient for vapor suppression. Turning on the auxiliary fuel pump with a normally operating engine pump will result in enrichment of the mixture. The auxiliary fuel pump should not be operated during takeoff and landing, since gravity and the engine driven fuel pump will supply adequate fuel flow to the fuel injector unit. In the event of failure of the engine driven fuel pump, use of the auxiliary fuel pump will provide sufficient fuel to maintain flight at maximum continuous power.

To ensure a prompt engine restart after running a fuel tank dry, switch the fuel selector to the opposite tank at the first indication of fuel flow fluctuation or power loss. Turn on the auxiliary fuel pump and advance the mixture control to full rich. After power and steady fuel flow are restored, turn off the auxiliary fuel pump and lean the mixture as necessary.

SINGLE ENGINE FUEL PUMP OPERATION (TCM FUEL INJECTED ENGINE)

The auxiliary fuel pump on single engine airplanes is controlled by a split rocker type switch labeled AUX PUMP. One side of the switch is red and is labeled HI; the other side is yellow and is labeled LO.

The LO side operates the pump at low speed, and, if desired, can be used for starting or vapor suppression. The HI side operates the pump at high speed, supplying sufficient fuel flow to maintain adequate power in the event of an engine driven fuel pump failure. In addition, the HI side may be used for normal engine starts, vapor elimination in flight, and inflight engine starts.

When the engine driven fuel pump is functioning and the auxiliary fuel pump is placed in the HI position, a fuel/air ratio considerably richer than best power is produced unless the mixture is leaned. Therefore, the auxiliary fuel pump must be turned off during takeoff or landing, and during all other normal flight conditions. With the engine stopped and the battery switch on, the cylinder intake ports can become flooded if the HI or LO side of the auxiliary fuel pump switch is turned on.

In hot, high altitude conditions, or climb conditions that are conducive to fuel vapor formation, it may be necessary to utilize the auxiliary fuel pump to attain or stabilize the fuel flow required for the type of climb being performed. Select either the HI or LO position of the switch as required, and adjust the mixture to the desired fuel flow. If fluctuating fuel flow (greater than 5 lbs/hr) is observed, place the auxiliary fuel pump switch in the HI or LO position as required to clear the fuel system of vapor. The auxiliary fuel pump may be operated continuously in cruise, if necessary, but should be turned off prior to descent. Each time the auxiliary fuel pump switch is turned on or off, the mixture should be readjusted.

PILOT SAFETY AND WARNING SUPPLEMENTS

FUEL PUMP OPERATION

MULTI-ENGINE FUEL PUMP OPERATION

Cessna multi-engine, low wing airplanes utilize engine driven fuel pumps to assist the continuous flow of fuel to the engine. As a general rule, the auxiliary fuel pumps should be utilized under the following conditions:

1. Every takeoff.

2. Initial climb after takeoff (unless the operating handbook indicates that it is not necessary).

When switching the fuel selector(s) from one tank to another.

Every approach and landing.

Anytime the fuel pressure is fluctuating and the engine is affected by the fluctuation.

During hot weather, such as hot engine ground operation where fuel vapor problems cause erratic engine operation.

High altitude. (For auxiliary fuel pump operation at high altitude consult the operating handbook.)

If the engine driven fuel pump should fail.

9. On some twins when using the auxiliary fuel tanks.

if the auxiliary fuel pump is used during ground operations, such as hot day engine starts or purging fuel vapor, pilots should check the condition of the engine driven fuel pump before takeoff by turning the auxiliary fuel pump OFF briefly, and then back ON for takeoff. If the engine driven fuel pump has failed, the engine will not continue to operate.

If the battery or master switch is on while an engine is stopped on the ground or in flight, the cylinder intake ports can become flooded if the auxiliary fuel pump is turned on. If this situation occurs in excess of 60 seconds, the cylinders must be purged as follows:

1. With the auxiliary fuel pump OFF, allow the induction manifold to drain at least five minutes or until fuel ceases to flow from the drains on the bottom of the engine.

If natural draining has occurred, ensure that the auxiliary fuel pump is OFF, the magnetos or ignition switch is OFF, the mixture is in IDLE CUT-OFF, and the throttle is FULL OPEN, then turn the engine with the starter

3. If natural draining has not occurred, perform maintenance as required,

A mandatory service bulletin (MEB88-3) was issued to replace the automatic fuel pressure sensing and the cockpit auxiliary fuel pump switches for each engine with three-position lever lock type toggle switches. These modifications provide direct pilot activation of the auxiliary fuel pumps.

On low wing multi-engine airplanes (except model 310, 310A, and 310B, which are not affected by this change), the switches are labeled AUX PUMP, L (left engine) and R (right engine) and switch positions are labeled LOW, OFF, and HIĞH. The LOW position operates the auxiliary fuel pumps at low pressure

11 FUEL PUMP OPERATION

PILOT SAFETY AND WARNING SUPPLEMENTS

and can be used, when required, to provide supplementary fuel pressure for all normal operations. The switches are OFF in the middle position. The HIGH position is reserved for emergency operation, and operates the pumps at high pressure. The switches are locked out of the HIGH position and the switch toggle must be pulled to clear the lock before it can be moved to the HIGH setting. The toggle need not be pulled to return the switch to OFF.

The LOW position of the auxiliary fuel pump switches should be used whenever an original manual/handbook or checklist procedure specifies either LOW (PRIME, in 310C, 310D, 310F, 310G, 310H, 320, and 320A.) or ON. The LOW position is also used anytime there are indications of vapor, as evidenced by fluctuating fuel flow. Auxiliary fuel pumps, if needed, are to be operated on LOW in all conditions except when an engine driven fuel pump fails.

The HIGH position supplies sufficient fuel flow to sustain partial engine power and should be used solely to sustain the operation of an engine in the event its engine driven fuel pump fails. Failure of an engine driven fuel pump will be evidenced by a sudden reduction in the fuel flow indication immediately prior to a loss of power while operating from a fuel tank containing adequate fuel. In an emergency, where loss of an engine driven fuel pump is involved, pull the applicable auxiliary fuel pump switch to clear the lock and select the HIGH position. Then adjust the throttle and mixture controls to obtain satisfactory operation. At high manifold pressure and RPM, auxiliary fuel pump output may not be sufficient for normal engine operation. In this case, reduce manifold pressure to a level compatible with the indicated fuel flow. At low power settings, the mixture may have to be leaned for smooth engine operation. If HIGH auxiliary pump output does not restore adequate fuel flow, a fuel leak may exist. The auxiliary pump should be shut off and the engine secured.

If the auxiliary fuel pump switches are placed in the HIGH position with the engine-driven fuel pump(s) operating normally, total loss of engine power may occur due to flooding.

When performing single engine operations, the auxiliary fuel pump of the engine to be shutdown should be turned OFF prior to any intentional engine shutdown, to preclude fuel accumulation in the engine intake system.

In models 310, 310A, and 310B, which are equipped with pressure type carburetors, the electric fuel boost pumps in the tanks provide a positive fuel flow as emergency pumps in the event of failure of the engine driven fuel pumps. They also provide fuel pressure for priming and starting. The boost pumps are operated by two electric switches, and the up position is ON. Always take off and land with these pumps turned ON. Anytime the boost pumps are turned on without the engines running, mixture controls must be in the idle cut-off position to prevent flooding the intake manifolds.

PILOT SAFETY AND WARNING SUPPLEMENTS

11
FUEL PUMP OPERATION

CENTERLINE THRUST TWINS (FUEL PUMP OPERATION)

The auxiliary fuel pumps on the centerline thrust models (336 and 337 Skymaster) are controlled by two split rocker type switches. The switches are labeled AUX PUMPS and F ENGINE R. One side of each switch is red and is labeled HI. The other side is yellow and is labeled LO. The LO side operates the pumps at low speed, and if desired, can be used for starting or vapor suppression. The HI side operates the pumps at high speed, supplying sufficient fuel flow to maintain adequate power in the event of an engine driven fuel pump failure. In addition, the HI side may be used for normal engine starts, vapor elimination in flight, and inflight engine starts.

When the engine driven fuel pump is functioning and the auxiliary fuel pump is placed in the HI position, a fuel/air ratio considerably richer than best power is produced unless the mixture is leaned. Therefore, these switches must be turned OFF during takeoff or landing, and during all other normal flight conditions. With the engine stopped and the battery switch ON, the cylinder intake ports can become flooded if the HI or LO side of the auxiliary fuel pump switch is turned on.

In hot, high altitude conditions, or climb conditions that are conducive to fuel vapor formation, it may be necessary to utilize the auxiliary fuel pumps to attain or stabilize the fuel flow required for the type of climb being performed. Select either the HI or LO position of the switches as required, and adjust the mixtures to the desired fuel flow. If fluctuating fuel flow (greater than 5 lbs/hr) is observed, place the appropriate auxiliary fuel pump switch in the HI or LO position as required to clear the fuel system of vapor. The auxiliary fuel pump may be operated continuously in cruise, if necessary, but should be turned off prior to descent. Each time the auxiliary fuel pump switches are turned on or off, the mixtures should be readjusted.

AUXILIARY FUEL TANKS

Many twin engine Cessna airplanes incorporate auxiliary fuel tanks to increase range and endurance. These tanks are usually bladder type cells located symmetrically in the outboard wing areas and contain no internal fuel pumps. When selected, the fuel from these tanks is routed to the engine driven fuel pump.

If the auxiliary fuel tanks are to be used, the pilot must first select main tank (tip tank) fuel for at least 60 minutes of flight (with use of 40-gailon auxiliary fuel tanks) or 90 minutes of flight (with use of 63-gailon auxiliary fuel tanks). This is necessary to provide space in the main fuel tanks for vapor and fuel returned from the engine driven fuel pumps when operating on the auxiliary fuel tanks. If sufficient space is not available in the main tanks for this returned fuel, the tanks can overflow through the overboard fuel vents. Since part of the fuel from the auxiliary fuel tanks is diverted back to the main tanks instead of being consumed by the engines, the auxiliary tanks will empty sooner than may be anticipated. However, the main tank volume or quantity will be increased by the returned fuel.

The fuel supply in the auxiliary fuel tanks is intended for use during cruise flight only. The shape of the auxiliary fuel tanks is such that during certain flight maneuvers, the fuel will move away from the fuel tank outlet. If the outlet is uncovered while feeding the engine, fuel flow to the engine will be interrupted and a temporary loss of power may result. Because of this, operation from the auxiliary fuel tanks is not recommended below 1000 feet AGL.

An optional auxiliary fuel tank may be installed on some centerline thrust twins (336 and 337 Skymaster). The system consists of two tanks, each containing 18 gallons (108 pounds) usable, one located in each inboard wing panel. The tanks feed directly to the fuel selector valves. The left auxiliary tank provides fuel to the front engine only and the right auxiliary tank provides fuel to the rear engine only. Fuel quantity for the auxiliary tanks is read on the same fuel quantity indicators used for the main fuel tanks. This is accomplished when the fuel selector valve handles are turned to the AUXILIARY position. As each selector valve handle is turned to this position, it depresses a gaging button, labeled PUSH TO GAGE, located in the AUXILIARY quadrant of the fuel selector valve placard. The depressed button actuates a microswitch and electrically senses auxiliary fuel rather than main fuel quantity. Auxiliary fuel quantity can be checked without changing the selector valve handle, by depressing the PUSH TO GAGE button manually. Depressing the gaging button, either manually or by rotating the selector valve handle to the AUXILIARY position, will illuminate the amber AUX FUEL ON indicator lights mounted above the engine instrument cluster. When fuel is being used from the auxiliary fuel tanks, any excess fuel and vapor from the engine driven pumps is returned to fuel line manifolds. The returned vapor passes through the fuel line manifolds to the vent lines and is routed overboard. The excess

12 AUXILIARY FUEL TANKS

PILOT SAFETY AND WARNING SUPPLEMENTS

fuel passes into the fuel line manifold and is returned to the engine driven pumps.

On some early model Skymasters, fuel vapor from the engine driven fuel pumps is returned to the main fuel tanks. When the selector valve handles are in the AUXILIARY position, the left auxiliary tank feeds only the front engine and the right auxiliary tank feeds only the rear engine. If the auxiliary tanks are to be used, select fuel from the main tanks for 60 minutes prior to switching to auxiliary tanks. This is necessary to provide space in the main tanks for vapor and fuel returned from the engine driven fuel pumps when operating on auxiliary tanks. On some models, auxiliary fuel boost pumps are not provided for the auxiliary fuel tank. Therefore it is recommended to use the auxiliary fuel tanks only in straight and level flight. When unsure of the type of auxiliary tank installation, consult the operating handbook for the respective airplane.

A few single-engine airplanes contain an auxiliary fuel tank. The system's main components include a fuel tank installed on the baggage compartment floor and an electric fuel transfer pump. The auxiliary fuel system is plumbed into the right main fuel tank.

To use the auxiliary fuel system, select the right wing fuel tank in cruise and operate on that tank until the fuel tank has adequate room for the transfer of auxiliary fuel. After selecting the left main tank, turn on the auxiliary fuel transfer pump to refill the right main fuel tank from the auxiliary tank. Transfer will take from 45 minutes to 1 hour. Prior to transfer, ensure that adequate fuel is available in the left tank to allow time for the auxiliary tank to transfer.

Do not operate the transfer pump with the fuel selector valve turned to either the BOTH or RIGHT positions. Total or partial engine stoppage will result from air being pumped into fuel lines after fuel transfer has been completed. If this should occur the engine will restart in 3 to 5 seconds after turning off the transfer pump, as the air in the fuel line will be evacuated rapidly.

After transfer is complete and the pump has been turned off, the selector may be returned to BOTH or RIGHT. Takeoff, climb, and landing should always be conducted with the selector in the BOTH position for maximum safety.

WING LOCKER FUEL TANK USAGE

Some twins may have wing locker fuel tanks installed in the forward portion of each wing locker baggage area. These tanks are bladder type cells for storage of extra fuel to supplement the main tank fuel quantity. The fuel in these tanks cannot be fed directly to the engines. Instead, it has to be transferred to the main tanks by wing locker fuel transfer pumps. Fuel transfer should begin as soon as adequate volume is available in the main fuel tanks to hold the wing locker fuel. Waiting until the main tanks are low before transferring wing locker fuel does not allow early recognition of possible failure to transfer.

PILOT SAFETY AND WARNING SUPPLEMENTS

AUXILIARY FUEL TANKS

If wing locker fuel is to be used, consult the operating handbook for the quantity of main tank fuel which must first be used in the respective main tank for the transferred wing locker fuel. This will prevent overflowing of the main tank(s) when transferring the wing locker fuel.

Wing locker fuel transfer pump switches are provided to manually control the transfer of the wing locker fuel to the main tanks. These switches should be turned ON only to transfer fuel and turned OFF when indicator lights illuminate to show that fuel has been transferred. The transfer pumps use the fuel in the wing locker tank for lubrication and cooling. Therefore, transfer pump operation after fuel transfer is complete will shorten the life of the pump. Fuel should be cross fed, as required, to maintain fuel balance.

INSTRUMENT POWER

VACUUM POWER FAILURES

Many airplanes may be equipped with some type of back-up vacuum system for operation in the event the primary vacuum system becomes inoperative in flight. The backup system may be in the form of another engine-driven vacuum pump, in parallel with the primary pump, or an electric standby vacuum pump, also in parallel with the primary pump, or both. If a back-up system is not available and the attitude and directional indicators are disabled, the pilot must rely on partial instrument panel operation. This may include using the electrically-powered turn coordinator or turn and bank indicator and the magnetic compass, altimeter, airspeed indicator, and rate of climb indicator.

A suction gage, and in some airplanes a low-vacuum warning light, provides a means of monitoring the vacuum system for proper operation in flight. Operating handbooks reflect a desired suction range during normal operation of the airplane. A suction reading outside of this range may indicate a system malfunction, and in this case, the vacuum driven instruments should not be considered reliable. Whenever operation of the airplane's vacuum system is in doubt, land when practical for repairs.

In the event of a directional indicator and attitude indicator failure due to vacuum failure, the pilot must rely on partial instrument panel operation using the remaining instruments. VFR operations can generally be conducted satisfactorily without the vacuum instruments. However, instrument meteorological conditions (IMC) can be considerably more challenging. An instrument rated pilot should stay current on partial panel flying skills but both VFR and IFR pilots should maintain VFR conditions if a vacuum failure occurs while clear of clouds. All pilots should become familiar with the following procedure for executing a 180° turn in clouds with the aid of either the turn coordinator or the turn and bank indicator.

Upon inadvertently entering clouds, maintain control of the aircraft. If it is desired to turn back out of the clouds, the following action should be employed:

- 1. Note the compass heading.
- 2. Note the time in both minutes and seconds.
- When the seconds indicate the nearest half minute, initiate a standard rate left turn, holding the turn coordinator or turn and bank indicator (if installed) symbolic airplane wing opposite the lower left index mark for 60 seconds. Then roll back to level flight by leveling the miniature airplane.
- Check accuracy of turn by observing the compass heading which should be the reciprocal of the original heading.

13

5. If necessary, adjust heading primarily with skidding motions rather than rolling motions so that the compass will read more accurately.

Maintain altitude and airspeed by cautious application of elevator control. Avoid over controlling by keeping the hands off the control wheel as much as possible and steering only with the rudder.

If conditions dictate, a descent through a cloud deck to VFR conditions may be appropriate. To guard against a spiral dive, choose an easterly or westerly heading to minimize compass card swings due to changing bank angles. In addition, keep hands off the control wheel and steer a straight course with rudder control by monitoring the turn coordinator. Occasionally check the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let-down conditions as

- 1. Extend landing gear (if applicable).
- Enrichen the fuel mixture.
- 3 Use full carburetor heat (if applicable).
- Reduce power to set up a 500 to 800 ft/min rate of descent.
- Adjust the elevator trim and rudder trim (if installed) for a stabilized descent at 5 to 20 knots above the best glide speed for the airplane.
- Keep hands off the control wheel.
- Monitor turn coordinator and make corrections by rudder alone.
- Check trend of compass card movement and make cautious corrections with rudder to stop the turn.
- 9. Upon breaking out of clouds, resume normal cruise flight.

ELECTRICAL POWER FAILURES

Many operating handbooks have emergency procedures for partial or total loss of electrical power in flight. These procedures should be reviewed periodically to remain knowledgeable of what to do in the event of an electrical problem. The pilot should maintain control of the airplane and land when practical if an electrical power loss is evident.

Early detection of an electrical power supply system malfunction can be accomplished by periodically monitoring the ammeter and, if equipped, lowvoltage warning light. The cause of these malfunctions is difficult to determine in flight. Common causes of alternator or generator failure are a broken drive belt, alternator or generator drive, a defective alternator control unit or voltage regulator or wiring. Problems of this nature constitute an electrical emergency and should be addressed immediately.

If alternator power cannot be restored, and a second or back up alternator is not available, the pilot must rely on the limited power of the battery only. Every effort should be made to conserve electrical power for use with the most essential equipment, such as communication and navigation radios, by turning off or not using any non-essential equipment. Electric or electro-hydraulic landing gear systems should be extended manually and flaps (if electrically

operated) should remain retracted during approach and landing to conserve battery power, especially in instrument conditions.

If an electrical power loss is experienced, continued flight is possible but should be terminated as soon as practical. Such things as fuel quantity and engine temperature indicators and panel lights may no longer work. Hand-held nav/comm radios and other such products are widely available and marketed for just such a scenario; otherwise navigation by pilotage and appropriate loss of communication procedures for the airspace involved should be conducted. The pilot should always have a flashlight available for night flights.

LOSS OF PITOT/STATIC SOURCES

PILOT SAFETY AND

WARNING SUPPLEMENTS

A thorough preflight inspection should reveal any blockage of the pitot tube, drain hole, or static port on the ground to allow corrective action to be taken prior to flight. Pilots should understand the various conditions and remedies associated with a loss of pitot-static sources.

Pitot heat should be used whenever flying in visible moisture and the temperature is near freezing. If airspeed is suspected to be in error while flying in possible icing conditions with the pitot heat on, the pitot heat switch should be cycled and the circuit breaker should be checked. If proper operation cannot be restored, the airspeed indicator must be considered unreliable.

If the pitot tube ram air inlet becomes blocked, the airspeed will drop to zero. If this blockage cannot be removed in flight, the pilot must rely on pitch attitude and power settings to maintain a safe airspeed. A slightly higher than normal power setting should be used to maintain a reasonable margin of extra airspeed on final.

When flying in clear ice conditions and pitot heat is unavailable, both the ram air inlet and the pitot drain hole could become blocked. This will cause the airspeed indicator to react like an altimeter, indicating a higher airspeed at higher altitudes and a lower airspeed at lower altitudes. The airspeed indicator must be ignored. A higher power setting appropriate to the overall icing problem should be used during the landing phase.

Many light single engine airplanes equipped with pitot heat may not be equipped with static source heat. If the static source becomes blocked, the airspeed indicator will still function, but will give erroneous indications. If the airplane climbs after the blockage occurs, the airspeed indicator will indicate lower than normal. If the airplane descends after the blockage occurs, the airspeed will indicate higher than actual. During the landing phase, this condition could deceive the pilot into thinking the airspeed is too high. The altimeter and vertical speed indicator will also be affected by a static source blockage. The altimeter will not indicate a change of altitude and the vertical speed indicator will indicate zero airspeed. Neither instrument will reflect any altitude changes.

If the airplane is not equipped with an alternate static source, and pitot/static instruments are essential for continued flight, the glass on the vertical speed indicator may be broken to provide cabin air to the static system lines. The vertical speed indicator will no longer be reliable, but the airspeed indicator and altimeter will be functional again, with slightly higher than normal indications.

GYRO SPIN UP AND SPIN DOWN

Gyro instruments, such as attitude and directional indicators, contain a high-speed rotor assembly driven by either electric or vacuum power. These instruments normally operate at very high RPM and can take up to 10 minutes or more to spin down after power is removed. Although some gyro instruments have a "quick erect" mechanism to permit manual erection of the rotor, which effectively minimizes time required before use, some gyro instruments still require up to 5 minutes or more to spin up and stabilize after power is applied. During this spin up or spin down time, the gyro instruments should not be considered reliable. A failed gyro can be detected by first checking the suction gage and, if available, low-voltage or low-vacuum lights as applicable and, second, checking for slow or erratic indications of the gyro instruments by cross-referencing with other flight instruments for contradictory indications.

FAILED GYRO EFFECT ON AUTOPILOT

Some autopilot systems receive roll and/or yaw rate inputs from the electrically-driven turn coordinator or turn and bank indicator. Other autopilot systems depend on vacuum-driven attitude and directional indicators or horizontal and azimuth reference. If a failure should occur in any of these instruments, the autopilot should be turned off. Random signals generated by a malfunctioning gyro could cause the autopilot to position the airplane in an unusual attitude. Use of the autopilot after a gyro failure may result in an out of trim condition. Be prepared to correct for this when turning off the autopilot.

PILOT SAFETY AND WARNING SUPPLEMENTS

14 ALTERNATE AIR SYSTEM

ALTERNATE AIR SYSTEM

An alternate source of air is provided to ensure satisfactory engine operation in the event the normal induction air filter or air inlet becomes obstructed. Although alternate air controls vary from one airplane to another, the types are: carburetor heat, direct manual control, automatic control, or a combination of automatic and manual controls. In most cases, the alternate air is extracted from inside the engine cowling and is, therefore, unfiltered and hotter than normal induction air. A loss of power will be caused by the hotter air. The richer mixture may require adjustment of the mixture control. Consult the applicable airplane operating handbook for details concerning the use of the alternate air system.

CARBURETOR HEAT AND INDUCTION ICING

Carburetor heat and manually operated alternate air valve(s) are controlled by the pilot. The carburetor heat system uses unfiltered air from inside the engine cowling. This air is drawn into a shroud around an exhaust riser or muffler and then ducted to the carburetor heat valve in the induction air manifold. The carburetor heat valve is controlled by the pilot and should be used during suspected or known carburetor icing conditions. Carburetor heat may also be used as an alternate air source should the induction air inlet or induction air filter become blocked for any reason.

The use of full carburetor heat at full throttle usually results in a 1 to 2 inch loss of manifold pressure or a loss of approximately 150 RPM, depending upon the airplane model. Application or removal of carburetor heat at higher power settings may require adjustment of the fuel mixture. It may be impractical to lean the mixture under low engine power conditions.

When a go-around or balked landing is initiated after use of carburetor heat during the landing approach, the pilot should usually advance the throttle first, then move the carburetor heat to off or cold. The throttle application must be smooth and positive. Rapid throttle advancement in some icing conditions could result in the engine failing to respond and the loss of power could become critical because of the low altitude and low airspeed.

When the relative humidity is more than 50 percent and the ambient air temperature is between 20°F to 90°F, it is possible for ice to form inside the carburetor, since the temperature of the air passing through the venturi may drop as much as 60°F below the ambient air temperature. If not corrected, ice accumulation may cause complete engine stoppage.

A drop in engine RPM on fixed pitch propeller airplanes and a drop in engine manifold pressure on constant speed propeller airplanes are indications of

ALTERNATE AIR FOR FUEL INJECTED ENGINE ICING

Either an automatic alternate air system, a manually controlled alternate air system, or a combination automatic and manual system are incorporated on most fuel injected engines to address the potential of a blocked air induction system.

On engines equipped with automatic alternate air, ram air from the engine cowling inlet enters an air filter, which removes dust and other foreign matter that would be harmful to the engine. If the air inlet or the induction air filter should become blocked, suction created by the engine will open an alternate air door, allowing air to be admitted from either inside or outside the cowling, depending upon the airplane model. This air bypasses the filter and will result in a slight decrease in full throttle manifold pressure on non-turbocharged engines, and a notable decrease in manifold pressure from the selected cruise power setting on turbocharged engines. This manifold pressure may be recoverable, up to a particular altitude, with throttle and/or RPM adjustment. The alternate air doors should be kept closed on the ground to prevent engine damage caused by ingesting debris through the unfiltered air ducts. For details concerning a specific model, consult the airplane operating handbook.

Most twin engine airplanes have a manually controlled alternate air door in each engine induction air system. If a decrease in manifold pressure is experienced when flying in icing conditions, the alternate air doors should be manually opened. On most twins, this manual control has two positions. When fully in, normal filtered ram air is provided; when fully out, warm unfiltered air from inside the cowling is provided. Other twins have alternate air controls with an additional intermediate or center detent to provide cool, unfiltered ram air to the induction system in the event the induction air filter is blocked by matter other than ice.

PILOT SAFETY AND WARNING SUPPLEMENTS

ALTERNATE AIR SYSTEM

Since the higher intake air temperature of the alternate air results in a decrease in engine power and turbocharger capability, it is recommended that the alternate induction air not be utilized until indications of induction air blockage (decreased manifold pressure) are actually observed.

If additional power is required, the pilot should increase RPM as required, move the throttles forward to maintain desired manifold pressure and readjust the fuel mixture controls as required. These recommendations do not replace the procedure in the airplane operating handbook.

Although most pilots are aware of the potential of carburetor to icing, many may think that a fuel injected engine is not subject to induction icing. Although a fuel injected engine will not form carburetor ice, other parts of the induction system such as bends in the system or the air filter can gather ice. Slush and/or snow can block the induction air filter. Induction air blockage can cause loss of manifold pressure or engine stoppage.

PILOT SAFETY AND WARNING SUPPLEMENTS

CARBON MONOXIDE

CARBON MONOXIDE

Carbon monoxide is a colorless, odorless, tasteless product of an internal combustion engine and is always present in exhaust furnes. Even minute quantities of carbon monoxide breathed over a long period of time may lead to dire consequences. Carbon monoxide has a greater ability to combine with the blood than oxygen. Once carbon monoxide is absorbed in the blood, it prevents the oxygen from being absorbed.

The symptoms of carbon monoxide poisoning are difficult to detect by the person afflicted and may include blurred thinking, a feeling of uneasiness, dizziness, headache, and loss of consciousness. If any of these symptoms occur, immediately open all cabin vents and turn the cabin heater off, Land as soon as possible at the nearest airport and seek medical attention if needed.

HEATER OPERATION

Many cabin heaters in general aviation airplanes operate by allowing ambient air to flow through an exhaust shroud where it is heated before being ducted into the cabin. Therefore, if anyone in the cabin smells exhaust fumes when using the cabin heater, immediately turn off the cabin heater and open all cabin vents. Land as soon as possible at the nearest airport and seek medical attention if needed.

WINDOW VENTILATION

If carbon monoxide is suspected in the cabin at any time, it is imperative that immediate ventilation be initiated, including the opening of cabin windows. Observe the maximum speed for window opening in flight. Opening a cabin window is probably the best means of ventilating the cabin while on the ground. However, care should be taken when parked with engine(s) operating or when in the vicinity of other airplanes that have their engines running. The exhaust gases from your airplane or the other airplane could enter the cabin through the open window. Also, engine exhaust could be forced into the cabin area during taxi operations or when taxing downwind.

Raiseria 1 luna toon

PRESSURIZED AIRPLANES

Refer to the operating handbook and/or approved flight manual for appropriate ventilation procedures.

TURBOCHARGER

When operating turbocharged engines, any power increases should be accomplished by increasing the propeller RPM first, then increasing the manifold pressure. Power reductions should be accomplished by reducing the manifold pressure first, then the RPM.

During cold weather operation, care should be exercised to insure that overboost does not occur during takeoff as a result of congealed oil in the waste gate actuating system. Before takeoff engine checks should not be accomplished until oil temperature is at least 75°F (minimum approved operating limit). Takeoff should not be started until oil temperature is above 100°F and oil pressure below 100 psi to assure proper oil flow to the turbocharger and its actuating system. Monitor manifold pressure during takeoff so as not to exceed specified takeoff limits. Advance the throttle slowly, pausing momentarily at approximately 30" MP to permit turbine speed to stabilize, then gradually open the throttle to obtain takeoff manifold pressure.

Prior to engine shut down, operate the engine at idle RPM for approximately 5 minutes to allow the turbocharger to cool and slow down. This reduces the possibility of turbine bearing coking caused by oil breakdown. This 5 minutes may be calculated from landing touchdown.

During pilot training, simulated engine out operation requiring the engine be shut down by closing the mixture should be held to an absolute minimum.

TURBOCHARGER FAILURE

The turbocharger system's purpose is to elevate manifold pressure and thus engine power to a level higher than can be obtained without it. A failure of the system will cause either an overboost condition or some degree of power loss. An overboost can be determined on the manifold pressure instrument and can be controlled by a throttle reduction.

If turbocharger failure results in power loss, it may be further complicated by an overly rich mixture. This rich mixture condition may be so severe as to cause a total power failure. Leaning the mixture may restore partial power. Partial or total power loss may also be caused by an exhaust system leak. A landing should be made as soon as practical for either an overboost or partial/total power loss.

PILOT SAFETY AND WARNING SUPPLEMENTS

IN-FLIGHT FIRES

IN-FLIGHT FIRES

FIRES IN FLIGHT

A preflight checklist is provided to aid the pilot in detecting conditions which could contribute to an airplane fire. Flight should not be attempted with known fuel, oil, or exhaust leaks, since they can lead to a fire. The presence of fuel or unusual oil or exhaust stains may be an indication of system leaks and should be corrected prior to flight.

Fires in flight must be controlled as quickly as possible by identifying and shutting down the affected system(s), then extinguishing the fire. Until this process is complete, the pilot should assume the worst and initiate action an immediate landing. A pilot must not become distracted by the fire to the point that control of the airplane is lost. The pilot must be able to complete a deductive analysis of the situation to determine the source of the fire. Complete familiarity with the airplane and its systems will prove invaluable should a fire occur.

ENGINE COMPARTMENT FIRES

An engine compartment fire is usually caused by fuel contacting a hot surface, an electrical short, bleed air leak, or exhaust leak. If an engine compartment fire occurs on a single engine airplane, the first step should be to shut off the supply to the engine by placing the mixture to idle cut off and the fuel selector/shutoff valve to the OFF position. The ignition switch should be left ON in order for the engine to use up the fuel which remains in the fuel lines and components between the fuel selector/shutoff valve and the engine. The airplane should be put into a sideslip, which will tend to keep the flames away from the occupants and the fuel tanks. If this procedure is ineffective, the pilot must make the most rapid emergency descent possible and an immediate landing.

In multi-engine airplanes, both auxiliary fuel pumps should be turned off to reduce pressure in the total fuel system (each auxiliary fuel pump pressurizes a crossfeed line to the opposite fuel selector). If equipped, the emergency crossfeed shutoff should also be activated. The engine on the wing in which the fire exists should be shut down and its fuel selector positioned to OFF even though the fire may not have originated in the fuel system. The cabin heater draws fuel from the crossfeed system on some airplanes, and should be turned off as well. The engine compartment fire extinguisher should be discharged if the airplane is so equipped.

An open foul weather window or emergency exit may produce a low pressure in the cabin. To avoid drawing the fire into the cabin area, the foul weather

Reissue - 1 June 1998

17 IN-FLIGHT FIRES

PILOT SAFETY AND WARNING SUPPLEMENTS

window, emergency exits, or any openable windows should be kept closed. This condition is aggravated on some models, with the landing gear and wing flaps extended. Therefore, it is recommended to lower the landing gear as late in the landing approach as possible. A no flap landing should also be attempted, if practical.

ELECTRICAL FIRES

The initial indication of an electrical fire is usually the distinct odor of burning insulation. Once an electrical fire is detected, the pilot should attempt to identify the effected circuit by checking circuit breakers, instruments, avionics, etc. If the affected circuit cannot be readily detected and flight conditions permit, the battery/master switch and alternator switch(es) should be turned OFF to remove the possible sources of the fire. If at night, ensure the availability of a flashlight before turning off electrical power. Then, close off ventilating air as much as practical to reduce the chances of a sustained fire. If an oxygen system is available in the airplane and no visible signs of flame are evident, occupants should use oxygen until smoke clears.

If electrical power is essential for the flight, an attempt may be made to identify and isolate the effected circuit by turning the Master Switch and other electrical (except magneto) switches off and checking the condition of the circuit breakers to identify the affected circuit. If the circuit can be readily identified, leave it deactivated and restore power to the other circuits. If the circuit cannot be readily identified, turn the Master Switch on, and select switches that were on before the fire indication, one at a time, permitting some time to elapse after each switch is turned on, until the short circuit is identified. Make sure the fire is completely extinguished before opening vents. Land as soon as possible for repairs.

CABIN FIRES

Fire or smoke in the cabin should be controlled by identifying and shutting down the affected system, which is most likely to be electrical in nature, and landing as soon as possible. Smoke may be removed by opening the cabin air controls. However, if the smoke increases in intensity when the air controls are opened, they should be closed as this indicates a possible fire in the heating system, nose compartment baggage area, or that the increase in airflow is aggravating this condition.

In pressurized airplanes, the pressurization air system will remove smoke from the cabin. However, if the smoke is intense, it may be necessary to either depressurize at altitude, if oxygen is available for all occupants, or execute an emergency descent to 10,000 feet, terrain permitting. "Ram Air Dump" handle may be pulled to aid the clearing of smoke from the cabin.

PILOT SAFETY AND WARNING SUPPLEMENTS

17 IN-FLIGHT FIRES

The pilot may choose to expel the smoke through the foul weather window(s). The foul weather window(s) should be closed immediately if the fire becomes more intense when the window(s) are opened. If smoke is severe, and there are no visible signs of flame, use oxygen masks (if installed) and begin an immediate descent.

If a fire extinguisher is used, ventilate the cabin promptly after extinguishing the fire to reduce the gases produced by thermal decomposition. If the fire cannot be extinguished immediately, land as soon as possible.

Reissue - 1 June 1998.

IN-FLIGHT OPENING OF DOORS

The occurrence of an inadvertent door opening is not as great of a concern to the safety of the flight, as the pilot's reaction to the opening. If the pilot is overly distracted, loss of airplane control may result even though disruption of airflow by the door is minimal. While the shock of a sudden loud noise and increase in sustained noise fevel may be surprising, mental preparation for this event and a plan of action can eliminate inappropriate pilot reaction.

INADVERTENT OPENING OF BAGGAGE/CARGO DOORS

The flight characteristics of an airplane will not normally be affected by an open baggage or cargo door. The aerodynamic effects on an open door can vary, depending on the location of the door on the airplane and the method used to hinge the door in relation to the slipstream. Baggage/cargo doors mounted on the side of the aft fuselage and hinged at the front will tend to stay in a nearly closed position at most airspeeds and pose no special problems as long as the airplane is not in uncoordinated flight in a direction which would permit unsecured baggage to fall out of the airplane. Because of the door location and the presence of baggage in the immediate area, the door may not be accessible for closing in flight. Passengers, especially children, should never be allowed to occupy the baggage portion of the cabin for the purpose of closing the door in flight. The pilot should slow the airplane to minimize buffeting of the door and land as soon as practical.

Top hinged baggage/cargo doors will react differently than front hinged doors it improperly latched before takeoff. Doors of this type, may pop open at rotation because of the increase in angle of attack and the slipstream pushing underneath the edge of the unsecured door. After the initial opening, a baggage door will generally tend to stay open and then may gently close as speed is reduced and the aircraft is configured for landing (the doors will probably tend to open again during flair). A top hinged door on the side of the aft fuselage of a high wing airplane can sometimes be moved to a nearly closed position by lowering the wing flaps full down (within approved airspeed limitations) so that wing downwash will act upon the door. Unlatched nose baggage doors and large cargo doors on the side of the aft fuselage cannot be closed in flight and a landing should be made as soon as practical. The pilot should avoid any abrupt airplane maneuvers in multi-engine airplanes with an open nose baggage door, as this could throw loose objects out of the

Front hinged wing locker doors in the aft part of the engine nacelle of multiengine airplanes will likely trail open a few inches if they become unlatched. Near stall speed just prior to landing, an unlatched door may momentarily float to a full open position.

If a door comes open on takeoff and sufficient runway remains for a safe abort, the airplane should be stopped. If the decision is made to continue the takeoff, maintain required airspeed and return for landing as soon as practical.

INADVERTENT OPENING OF CABIN/EMERGENCY EXIT DOORS (UNPRESSURIZED)

If a cabin or emergency exit door should inadvertently open during unpressurized flight, the primary concern should be directed toward maintaining control of the airplane. Then, if a determination is made to close the door in flight, establish a safe altitude, trim the airplane at a reduced airspeed, and attempt to close the door. To facilitate closing the door, slide the adjacent seat aft slightly to obtain a better grasp of the door handle. The door handle must be in the close position prior to pulling the door closed, followed by rotating the handle to the locked position. Under no circumstances should the pilot leave his/her seat, or unfasten the restraint system to secure a

If a cabin door reopens when latched closed, the flight should be terminated as soon as practical and repairs made.

INADVERTENT OPENING OF CABIN/EMERGENCY EXIT DOORS (PRESSURIZED)

An inadvertent opening of a cabin/emergency exit door while the cabin is pressurized and the aircraft is above 12,500 feet, will require the use of supplemental oxygen or an emergency descent to an altitude below 12,500 feet. The pilot may attempt to close the door after ensuring that all occupants are using supplemental oxygen or the cabin altitude is below 10,000 feet. However, the primary concern should be maintaining control of the airplane. The flight should be terminated as soon as practical and the cause of the door opening determined before pressurized flight is continued. Under no circumstances should the pilot leave his/her seat, or unfasten the restraint system to secure a door.

MAINTENANCE

WARNING SUPPLEMENTS

PILOT SAFETY AND

Airplanes require inspection and maintenance on a regular basis as outlined in the operating handbook, service/maintenance manuals, other servicing publications, and in Federal Aviation Regulations. A good visual inspection is a continuing maintenance procedure and should be performed by anyone who is involved with an airplane. This includes pilots, line personnel, and the maintenance department. When worn or damaged parts are discovered, it is essential that the defective parts be repaired or replaced to assure all systems remain operational. The source of information for proper maintenance is the airplane Service/Maintenance Manual and Service Letters or Service Bulletins. Cessna's Service/Maintenance Manuals are occasionally revised. Maintenance personnel should follow the recommendations in the latest revision. The owner/operator must ensure that all unacceptable conditions are corrected and the airplane receives repetitive and required inspections.

UNAUTHORIZED REPAIRS/MODIFICATIONS

All repair facilities and personnel should follow established repair procedures. Cessna does not support modifications to Cessna airplanes, whether by Supplemental Type Certificate or otherwise, unless those modifications are approved by Cessna. Such modifications may void any and all warranties on the airplane, since Cessna may not know the full effects on the overall airplane. Cessna has not tested and approved all such modifications by other companies. Operating procedures and performance data specified in the operating handbook and maintenance procedures specified in the service/Maintenance Manual may no longer be accurate for the modified airplane. Operating procedures, maintenance procedures and performance data that are effected by modifications not approved by Cessna should be

AIRWORTHINESS OF OLDER AIRPLANES

For an airplane to remain airworthy and safe to operate, it should be operated in accordance with Cessna recommendations and cared for with sound inspection and maintenance practices.

An aging airplane needs more care and attention during maintenance processes and may require more frequent inspection of structural components for damage due to the effects of wear, deterioration, fatigue, environmental exposure, and accidental damage. Typical areas requiring more frequent

PILOT SAFETY AND WARNING SUPPLEMENTS

SEAT AND RESTRAINT SYSTEMS

SEAT AND RESTRAINT SYSTEMS

ADJUSTABLE SEAT ASSEMBLIES

Most Cessna manually-adjustable seats are suspended on two parallel, cabin floor mounted seat tracks by roller assemblies which allow the seat to move forward and rearward along the tracks. A series of holes are provided, usually in the forward end of either or both seat tracks, to accommodate a mechanical locking pin(s) which allows intermediate positioning and locking of the seat. To prevent the seat from disengaging from the seat tracks when reaching the ends, a mechanical seat stop is installed near both ends of the track(s).

Incidents of manually-adjustable seats slipping rearward or forward during acceleration or deceleration of the airplane have been reported. The investigations following these incidents have revealed discrepancies such as gouged lockpin holes, bent lockpins, excessive clearance between seat rollers and tracks, and missing seat stops, to name a few. Also, dust, dirt, and debris accumulations on seat tracks and in the intermediate adjustment holes have been found to contribute to the problem. A close check of each seat during daily preflight, improved cabin cleanliness, and replacement of parts when necessary will help prevent accidents involving seats. Visual checks of the airplane should always include the cabin interior.

When inspections are made, examination of the following items is recommended:

- 1. Check the seat assembly for structural integrity.
- Inspect the roller assemblies for separation and wear.
- Check the locking mechanism (actuating arm, linkage, locking pin or pins) for wear.
- 4. Check all seat track stops for security and proper installation.
- Inspect seat tracks for condition and security, and the locking pin holes for wear, and dirt or debris accumulation.
- Determine that the floor structure in the vicinity of the seat tracks is not cracked or distorted.
- Ensure that the secondary seat stop addressed in mandatory Service Bulletin SEB89-32 is installed.

Damaged or worn parts are a potential hazard which should be immediately repaired or replaced. Cessna recommends repair and/or replacement of damaged components in accordance with the airplane's service or maintenance publications and Service Bulletins.

RESTRAINT SYSTEMS

While performing the cabin portion of the daily preflight, it is recommended that pilots check each restraint system installed in the airplane. This should include a functional check of the restraint belt locking and releasing mechanism. If new passengers or students are to be carried, it is a good practice to insist that they operate the restraint system to become familiar with the procedures.

During inspections, maintenance personnel should check each restraint system installation for serviceability in accordance with current publications applicable to the airplane. Special attention should be given to restraint attachment points and to the nylon bushing on the belt at the point where the shoulder restraint harness attaches. Undetected cracks or broken connections could cause a serious situation to develop when it is least expected. The restraint system webbing should be inspected for degradation. Repair or replace the restraint system per Cessna instructions if damage is detected.

EXHAUST AND FUEL SYSTEMS

THE ENGINE EXHAUST SYSTEM

The primary function of an engine exhaust system is to route exhaust gases safely overboard. Other functions of the exhaust system may include use as the driving source for a turbocharger turbine and/or use as a heat source for carburetor and/or cabin heat requirements.

Heat and carbon monoxide are the unavoidable byproducts of all reciprocating engine operations. The temperatures within the exhaust system of an engine can exceed 1750°F. Consequently, if an exhaust leak should occur, heat damage can occur to the engine mounting structure, and accessories such as hoses, belts, wire bundles, etc. In some cases, the position of the leak could lead to engine stoppage and/or an engine compartment fire.

An exhaust system leak can also lead to carbon monoxide poisoning. This colorless, odorless, tasteless combustion byproduct is always present in exhaust furnes. For this reason, special seals are provided wherever cables, hoses, wire bundles, etc. pass through the engine firewall. For even greater protection from carbon monoxide, special window, door, and fuselage seals are installed. No leakage of exhaust into the cabin should be tolerated.

Exhaust systems should be checked for stains indicative of exhaust leaks at cylinder heads or cracks in the exhaust or tailpipe. The condition and security of the exhaust system in the area of the exhaust muffler shroud should be checked. Any cracks or leaks in this area could be a source for exhaust to enter the cabin.

ENGINE COMPARTMENT TEMPERATURES

High engine compartment temperatures can degrade the operational efficiency of the engine and also accelerate the deterioration of engine components. Several conditions could cause or contribute to a higher than normal engine compartment temperature; however, improper operating techniques are found to be the most common cause. Avoid excessive operation of an engine on the ground. Prolonged ground operations should be done into the wind at rich mixture settings. If the cowling has been removed for maintenance, cooling airflow is poor and cylinder head temperature and oil temperature gages must be monitored during engine runuos.

On virtually all air-cooled reciprocating engines, the engine and engine compartment are cooled by utilizing a pressure cooling baffle system with airflow as the cooling medium. The condition of these baffles and their seals is important.

21 EXHAUST AND FUEL SYSTEMS

PILOT SAFETY AND WARNING SUPPLEMENTS

Baffles should be secure and baffle seals should be positioned in a direction which would seal airflow around the engine baffles. Even a slight reduction in cooling efficiency can cause the engine to operate hotter than normal, thus increasing the potential for heat damaged components.

An inspection of the engine compartment, plus careful observation of the engine temperatures during normal flight, can be of great assistance in verifying the condition of the engine. If the pilot takes the time to record engine temperatures on a regular basis, trends within the engine can be detected early and corrected before a serious condition occurs.

HOSES AND WIRE HARNESS INTEGRITY

All fuel, oil, and hydraulic components should be checked for condition, security and any evidence of leakage. All leaks should be repaired before starting the engine.

As airplanes and engines age, there is a need to re-emphasize the inspection or replacement requirements of engine hoses or lines that carry fuel, oil, or hydraulic fluid. For newer Cessnas, a replacement requirement for hoses in the engine compartment (except tellon lined) has been established at each 5 years or at engine overhaul, whichever occurs first. This is considered to include "shelf" life. All hose manufactured for airplane use is marked indicating the quarter-year in which they were manufactured. For instance, a listing of "4Q85" means the hose was manufactured in the fourth quarter of 1985. Maintenance personnel should not use hoses with a high "shelf" life age.

Like time, heat is always a detriment to hoses. The prudent pilot realizes during the daily preflight, that an engine hose might look good, but if it is wiggled, a telltale "crackle" may be heard. This means that the hose is brittle and should be replaced. Also if he slides his hand over the back side of the hose, he may find an abrasion or wear not visible from the front side.

Ignition leads/wire harnesses and spark plugs are also affected by excessive heating in the engine compartment. Overheating of the spark plug barrels, sometimes caused by damaged cylinder baffles or missing cooling air blast tubes, may seriously deteriorate the ignition leads. Any overheating of a spark plug by a defective baffle or exhaust gas leak at the exhaust pipe mounting flange can generate temperatures sufficient to cause pre-ignition and piston distress.

PILOT SAFETY AND WARNING SUPPLEMENTS

RETRACTABLE LANDING GEAR

RETRACTABLE LANDING GEAR

The adjustment and rigging of a retractable landing gear system should be done by trained maintenance personnel. Continued reliability of the landing gear system is only possible if it is properly maintained in the prescribed published manner. The rigging process must be performed exactly as published in the Cessna Service/Maintenance Manual and Service Bulletins. For complete emergency procedures concerning landing gear extension, refer to the airplane operating handbook.

If the airplane cabin is pressurized and it becomes necessary to use the heated alternate induction air on both engines, the pressurization controls must be selected OFF to preventing nacelle fumes from entering the cabin. The cabin should be depressurized and maximum ventilation provided. Therefore, if the flight altitude is above 10,000 feet, all occupants should use oxygen, if available, or descent should be initiated.

PILOT SAFETY AND WARNING SUPPLEMENTS

24 POTENTIAL HAZARDS

POTENTIAL HAZARDS

PROPELLERS

WARNING

ALWAYS STAND CLEAR OF PROPELLER BLADE PATHS, ESPECIALLY WHEN MOVING THE PROPELLER. PARTICULAR CAUTION SHOULD BE PRACTICED AROUND WARM ENGINES.

Review of propeller accidents indicates that most were preventable. A propeller under power, even at slow idling speed, has sufficient force to inflict fatal injuries. Pilots can be most effective in ensuring that passengers arrive and depart the vicinity of the airplane safely by stopping the engine(s) during loading and unloading.

Cessna airplanes are delivered with propellers using paint schemes to increase visibility of the blades. Owners should maintain the original paint

Pilots and Service personnel should develop the following safety habits:

- Before moving a propeller or connecting an external power source to an airplane, be sure that the airplane is chocked, ignition switches are in the OFF position, throttle is closed, mixture is in IDLE CUT-OFF position, and all equipment and personnel are clear of the propeller. Failed diodes in airplane electrical systems have caused starters to engage when external power was applied regardless of the switch position.
- When removing an external power source from an airplane, keep the equipment and yourself clear of the propeller.
- Pilots should make certain that all personnel are clear of the propeller, prior to engine start.
- Attach pull ropes to wheel chocks located close to a rotating propeller(s).
- Before removing the wheel chocks, the pilot should hold brakes or apply the parking brake.
- Be absolutely sure that all equipment and personnel are clear of the airplane before releasing the brakes.
- Ground personnel should be given recurrent propeller safety training to keep them alert to the dangers of working around airplanes.

The pilot should carefully inspect the propeller during each preflight inspection. Some constant speed propellers manufactured by McCauley are subject to a requirement that they be filled with a red-dyed oil. This oil helps lubricate and

PILOT SAFETY AND WARNING SUPPLEMENTS

PRESSURIZED AIRPLANES

1

PRESSURIZED AIRPLANES

DOOR SECURITY

The conventional and air-stair doors on pressurized airplanes have a series of pins, actuated by an overcenter locking handle, to maintain the door seal during the pressurization cycle. Some air-stair doors are sealed by pressurization air pressing against the cabin door windlace which covers the door gap. Door security can be verified by visually checking the locking indicator for the door handle safety lock, in the case of single-engine airplanes, and checking for correct locking indications provided in the door of multi-engine airplanes. It is recommended that pilots check the locking pins and door seals for cracks or damage during each preflight. Any damaged parts should be repaired prior to pressurized flight.

WINDOWS AND WINDSHIELDS

The windows in pressurized airplanes are exposed to a fatigue cycle each time the airplane is pressurized. These cycles could lead to fatigue cracks in and around the windows. Windows should be inspected frequently for condition and serviceability. Windows or windshields having replacement life limits should be replaced prior to intervals defined in applicable service/maintenance manuals.

The windows and windshields on pressurized airplanes are particularly sensitive to crazing and scratches. Any crazing, cracks, or deep scratches cannot be tolerated for pressurized flight. Consult the airplane's operating manual when in doubt about the severity of the damage. Repairs should be completed prior to pressurized flight.

THE PRESSURE VESSEL

There are significant structural differences between the fuselage of a non-pressurized airplane and one which is pressurized. The pressure vessel is the portion of the cabin area to be pressured. Pressure differential is the difference between the atmospheric pressure at the altitude at which the airplane is flying and the pressure inside the cabin.

Any seam, joint, or hole where wire bundles or tubing pass through the pressure vessel must be sealed to maintain the selected pressurization. If any of these seals are deteriorated or missing, the normal cabin pressure differential may be impossible to attain. Maintenance personnel should inspect the pressure seals for serviceability. Any cracks in the skin of the pressure

Reissue - 1 June 1998

prevent corrosion of internal propeller parts and may assist in detection of cracks. If a crack is detected, the airplane should not be flown until the

AIR CONDITIONING FREON

The refrigerant R- 12 (FREON) is relatively safe to handle when using proper protective safety equipment. Since at sea level the boiling point of R- 12 is -21.6°F, any contact with bare skin will immediately burn (freeze) the area. If R-12 should contact your eye, it will burn and can cause permanent blindness. Treat spills or splashes on your body by washing with clean, cool, water, and seek immediate medical attention. R-12, when heated to a high temperature such as with an open flame or spillage on a hot manifold, generates phosgene gas (a colorless gas with an unpleasant odor). This gas is a severe respiratory irritant and should be considered as a DEADLY POISON.

USED ENGINE OIL

Pilots and maintenance personnel who handle engine oil are advised to minimize skin contact with used oil, and promptly remove any used engine oil

The following are some do's and don'ts concerning used engine oil:

- 1. Do follow work practices that minimize the amount of skin exposed, and the length of time used oil stays on the skin.
- Do thoroughly wash used oil off skin as soon as possible.
- Do wash oil-soaked clothing before wearing them again. Discard oil-
- Do use gloves made from material that oil cannot penetrate.
- Don't use kerosene, gasoline, thinners, or solvents to remove used engine oil. These products can cause serious toxic effects.
- 7. Don't put oily rags in pockets, or tuck them under a belt. This can cause continuous skin contact.
- Don't pour used engine oil on the ground, or down drains and sewers. This is a violation of Federal Law. The Environmental Protection Agency (EPA) encourages collection of used engine oil at collection points in compliance with appropriate state and local ordinances.

AVIATION FUEL ADDITIVE

Ethylene glycol monomethyl ether (EGME), which is a primary ingredient in aviation fuel additives, is toxic. It creates a dangerous health hazard when breathed or absorbed into the skin. When inhaled, EGME is primarily a central nervous system depressant, and acute inhalation overexposure may cause kidney injury. The primary symptoms of inhalation overexposure include

headache, drowsiness, blurred vision, weakness, lack of coordination, tremor, unconsciousness, and even death. EGME is irritating to the eyes and skin and can be readily absorbed through the skin in toxic amounts. Symptoms of overexposure due to skin absorption are essentially the same as those outlined for inhalation.

When servicing fuel with an anti-ice additive containing EGME, follow the manufacturers instructions and use appropriate personal protective equipment. These items would include chemical safety goggles or shield, respirator with organic vapor cartridges, nonabsorbing neoprene rubber gloves and an apron and long-sleeved shirt as additional skin protection from spraying or splashing anti-ice additive.

In the event EGME contact is experienced, the following emergency and first aid procedures should be used.

- 1. If EGME is inhaled, remove person to fresh air. If breathing is difficult, administer oxygen. If the person is not breathing give artificial respiration. Always call a physician.
- If eye or skin contact is experienced, flush with plenty of water (use soap and water for skin) for at least 15 minutes while removing contaminated clothing and shoes. Call a physician. Thoroughly wash contaminated clothing and shoes before reuse.
- If ingested, drink large quantities of water and induce vomiting by placing a finger far back in throat. Contact a physician immediately. If vomiting cannot be induced, or if victim is unconscious or in convulsions, take immediately to a hospital or physician. Do not induce vomiting or give anything by mouth to an unconscious person.

Diethylene glycol monomethyl ether (DIEGME), a fuel anti-icing additive approved for use in some airplanes, is slightly toxic if swallowed and may cause eye redness, swelling and irritation. DIEGME also is combustible. Before using DIEGME, refer to all safety information on the container.

BIRDS, INSECTS, AND RODENTS

PILOT SAFETY AND

WARNING SUPPLEMENTS

Bird, insect, and mouse nests in airplanes are both hazardous and costly. They seem to find even the smallest opening on an airplane to make their nests. Evidence of nest building activities may include the following:

- 1. Any mud smears or droplets at pitot/static masts, fuel tank vents, crankcase breathers, stall warning vanes, cabin air vents, and any fluid drain holes are indications of mud dauber wasp activities.
- Straw, string, or blades of grass extending from cowling openings, carburetor air intakes, blast tubes, or exhaust stacks are signs of birds at work.
- Cotton batting, shreds of fabric, and/or paper at wheel wells and empennage openings are frequently indicators that rodents such as

mice have been or may still be on board. They may gnaw on any material in the airplane including wire bundles and rubber or plastic tubing.

If nests or building materials are found on the airplane, they must be removed before flight. It is strongly recommended that a qualified mechanic thoroughly inspect components such as pitot/static systems for remains of any nesting material after its removal and before flight to ensure complete removal. Even small amounts of foreign material can result in significant problems in flight.

Some precautions can be taken to prevent problems. Always use the pitot tube cover and any other external covers when the airplane is being stored. If the airplane is hangared, make sure the hangar is kept clean and neat to prevent insects and mice from lodging in the hanger in the first place. If need be, set traps for rodents and/or spray the area for insects. Models of predators that appear life-like such as owls or snakes may also be effective at preventing some birds from lodging in a hangar.

Removal of the nest of an insect, bird, or rodent does not prevent reconstruction elsewhere on the airplane or even in the same location again. Some creatures are not easily discouraged and may return to cause problems within a very short time period. Regardless of precautions used to prevent such problems, the pilot should be alert to the evidence of small animal activities during every preflight inspection.

FIRE EXTINGUISHER AGENTS

Halon, Bromochloromethane (CB), Carbon Dioxide (CO2), and dry chemical extinguishing agents are four of the most common types of fire extinguishing agents found in and around airplanes. Prolonged exposure (5 minutes or more) to any of these agents in a confined area could cause serious injury or even death. Pilots and ground personnel should become familiar with the precautions associated with each particular agent. Adequate respiratory and eye protection from excessive exposure, including the use of oxygen when available, should be sought as soon as the primary fire emergency will permit.

The discharge of large amounts of carbon dioxide to extinguish a fire may create hazards to personnel such as oxygen deficiency and reduced visibility. The dilution of the oxygen in the air, by the carbon dioxide concentrations that will extinguish a fire, may create an atmosphere that will not sustain life. Personnel rendered unconscious under these conditions can usually be revived without any permanent ill effects when promptly removed from the adverse condition.

The discharge of large amounts of dry chemical agents may create hazards to personnel such as reduced visibility and temporary breathing difficulty. Where there is a possibility that personnel may be exposed to dry chemical agents, suitable safeguards should be provided to ensure prompt evacuation.

OXYGEN

Before servicing any airplane with oxygen, consult the specific airplane service/maintenance manual to determine the proper type of servicing equipment to be used. Airplanes should not be serviced with oxygen during refueling, defueling, or other maintenance work which could provide fuel and a source of ignition. Also, oxygen servicing of an airplane should be accomplished outside, not in hangars.

Oxygen is a very reactive material, combining with most of the chemical elements. The union of oxygen with another substance is known as oxidation. Extremely rapid or spontaneous oxidation is known as combustion. While oxygen is non-combustible in itself, it strongly and rapidly accelerates the combustion of all flammable materials; some to an explosive degree.

The following are some do's and don'ts when handling or using oxygen:

- Do check that only "aviators breathing oxygen" is going into the airplane system.
- Don't confuse aviators breathing oxygen with "hospital/medical" oxygen. (The latter is pure enough for breathing, but the moisture content is usually higher which could freeze and plug the lines and valves of an airplane oxygen system.)
- 3. Do reject any oxygen that has an abnormal odor (good oxygen is
- Do follow the published applicable instructions regarding charging, purging, and maintenance of airplane oxygen systems.
- Don't use oil or grease (including certain lipsticks and lip balms) around oxygen systems.
- Don't expose oxygen containers to high temperatures.

COMPRESSED AIR

Compressed air is a mechanic's tool as versatile as electricity, and can be as deadly. The use of compressed air to blow dust or dirt from parts of the body or clothing is a dangerous practice. As little as 12 psi can dislocate an eyeball. Air can enter the navel through a layer of clothing and inflate and rupture the intestines. Compressed air has been known to strike a small wound on a person's hand and inflate the arm.

Never look into or point any compressed air apparatus toward any part of the body. Always wear prescribed personal protective equipment. Also, continuously check the condition of air tools and air hoses to make sure they do not show signs of damage or looseness. A loose hose carrying pressure is like a bullwhip and can cause serious injury to personnel and/or cause damage

to surrounding equipment. If a situation such as this should occur, do not attempt to catch the hose end; shut off the air source first.

STATIC ELECTRICITY

Static electricity, by definition, is a negative or positive charge of electricity that an object accumulates, and creates a spark when the object comes near another object. Static electricity may accumulate on an airplane during flight or while it is on the ground, as long as air is flowing over its surfaces. Unless during any fueling operations.

Grounding an airplane is a good safety precaution because static electricity cannot be seen until it's too late. To properly ground an airplane, attach one end of a static ground wire to an unpainted point on the airplane and the other end to an approved grounding stake. Attaching the ground wire to the airplane first will ensure that any spark of static electricity will occur at the grounding stake and not at the airplane. Do not attach a ground wire to any antenna. Antennas are poor grounding attachment points because they are insulated from the airplane structure.

On some airplanes, wick-type static dischargers are installed to improve radio communications during flight through dust or various forms of precipitation (rain, snow or ice crystals). Under these conditions, the build-up and discharge of static electricity from the trailing edges of wings, rudder, elevator, and propeller tips can result in loss of usable radio signals on all communications and navigation radio equipment. Usually the ADF is first to be affected and VHF communication equipment is the last to be affected. Installation of static dischargers reduces interference from precipitation static, but it is possible to encounter severe precipitation static conditions which might cause the loss of radio signals, even with static dischargers installed.

Static dischargers lose their effectiveness with age, and therefore should be checked at every scheduled inspection by a qualified technician. If testing equipment is not available, it is recommended that the wicks be replaced every two years, especially if the airplane is operated frequently in IFR conditions.

ELT BATTERY AND GAS SPRING/DAMPER DISPOSAL

To prevent bodily injury, do not compact (compress) or incinerate an ELT battery-pack or gas spring/damper. The ELT battery pack should be discarded in accordance with local EPA standards.

A gas spring or gas damper contains an inert gas and oil under pressure, and reacts much like an aerosol can when compressed or heated; it may explode. Therefore, all unserviceable gas springs or dampers should be depressurized, using the maintenance manual instructions.

PILOT SAFETY AND WARNING SUPPLEMENTS

POTENTIAL HAZARDS

HEARING LOSS

Hearing loss due to overexposure to loud noise levels is a real possibility white working near operating airplane engines. Continuous exposure to excessive noise diminishes hearing acuity, with high frequency response failing first. If the overexposure continues, the middle frequencies, most important in conversation, are also lost. Earmuffs, some headset types, and earplugs are very useful to avoid hearing loss. By far, the earplug has proven to be the best protection overall. Limits have been established which relate sound level (dB) to exposure time. These limits are based on daily exposures for long intervals.

Sound Level (dB)	115	110	105	100
Maximum Time (min.)	15	30	60	120

WEATHER RADAR EXPOSURE

The dangers of exposure to airborne weather radar operated on the ground include the possibility of damage to low tolerance parts of the human body and ignition of combustible materials by radiated energy. Low tolerance parts of the body include the eyes and testes. Airborne weather radar should be operated on the ground only by qualified personnel. The radar should not be operated while the airplane is in a hangar or other enclosure unless the radar transmitter is disconnected, or the energy is directed toward an absorption shield which dissipates the radio frequency (RF) energy.

Personnel should never stand near or directly in front of a radar antenna which is transmitting. When the antenna is transmitting and scanning, personnel should not be allowed within 15 feet of the area being scanned by the antenna.

Personnel should not be allowed at the end of an open waveguide (hollow duct work through which electromagnetic waves are conducted to and from the antenna) unless the radar is off and will remain off. Radar should not be operated with an open waveguide unless a "dummy load" is connected to the portion which is connected to the transmitter. Personnel should not look into a waveguide, or the open end of a coaxial connector or line connected to a radar transmitter.

Weather radar installed on any airplane should not be operated while that airplane, or an adjacent airplane is being refueled or defueled.

NOTES

X

SUPPLEMENTS

	N 64477 SAMPLE	SAMPLE AIRPLANE		YOUR AIRPLANE	
	LOADING PROBLEM	WEIGHT (LBS)	MOMENT (LBS-IN) / 1000	WEIGHT (LBS)	MOMENT (LBS-IN) / 1000
1.	BASIC EMPTY WEIGHT.(use the data pertaining to your airplane as it is presently equipped. Includes unusable fuel and full oil)	1563.6	60.6	1563.6	60.6
2.	USABLE FUEL. (at 6 lbs / gal) standard tanks 38 gal maximum.	228.0	10.9		7. 88
3.	PILOT & FRONT PASSENGER. (station 34 to 46)	340.0	12.6		
4.	REAR PASSENGERS	168.0	12.3		
5.	* BAGGAGE AREA 1 OR PASSENGER ON CHILD'S SEAT. (station 82 to 108, 120 lbs max)	7.4	0.7		
6.	* BAGGAGE AREA 2 (station 108 to 142, 50 lbs max)			92	
7.	RAMP WEIGHT & MOMENT	2307.0	97.1		
8.	FUEL ALLOWANCE FOR ENGINE START, TAXI, AND RUNUP.	-7.0	-0.3		
9.	TAKEOFF WEIGHT & MOMENT (subtract step 8 from step 7).	2300.0	96.8		

^{10.} Locate this point (2300 at 96.8) on the Center of Gravity Moment Envelope, and since this point falls within the envelope, the loading is acceptable.

^{*} The maximum allowable combine weight capacity for baggage areas 1 and 2 is 120 lbs.